
HotSpotter: a JavaML-based approach to discover
Framework’s HotSpots

Nuno Flores , Diana Soares, Helder Ferreira, Marco Rodrigues

Faculdade de Engenharia Universidade do Porto
R. Dr. Roberto Frias s/n,

4200-465 Porto, Portugal
{mei03009, mei03014, mei03001, mei03016}@fe.up.pt

Abstract. Object-oriented frameworks are designed with reusability as the
main design concern. In order to develop concrete solutions by customizing ex-
isting frameworks, developers must be aware of its areas of flexibility, which
are commonly called hot-spots. A common problem with framework reuse is
the extension and detail of existing documentation, often resulting insufficient
to communicate the level of knowledge the developer needs to be effective in
reusing the framework. This paper addresses this problem by providing a tool
that detects those hot-spots, called the HotSpotter, thus enabling the developer
to rapidly identify where is possible to customize the framework in order to ob-
tain the desired solution. The HotSpotter is a tool targeted for frameworks writ-
ten in Java, and it follows a multi-phased process that starts from a JavaML
base representation of the framework's source-code and evolves through a se-
ries of XSL transformations until reaching the desired results. This approach in-
tends to uncover the hot-spots of frameworks or applications, by identifying
templates and hooks and then grouping them using predefined heuristics. The
results obtained with the XML-based version of the HotSpotter tool was com-
pared and validated against those of a similar existing tool, using the JUnit
framework as a case-study.

1 Introduction

Object-oriented application frameworks are intended to provide software for reuse
[4]. Their generic design within a given domain and its reusable implementation spurs
rapid development of software solutions. Despite this great potential for reuse, its
practical feasibility can only be reached if the framework design becomes thoroughly
understood and its extensibility parts are clearly recognizable. The complexity behind
the design and implementation of the framework makes it difficult to grasp its flexi-
bility, forcing a good documentation support vital. Most often, the existing documen-
tation lacks in extent and detail and is insufficient to make the developer aware of its
flexibility.

This paper addresses the need to such awareness by providing a tool that detects
those areas of flexibility, called the hotspots, thus enabling the developer to rapidly
identify where to act upon, configuring the framework to evolve to the desired solu-

tion. Due to its potentially large size and complexity, the ability to quickly understand
and apply a framework is a critical issue [4] in software development.

The HotSpotter is a tool targeted for frameworks written in Java and which goal is
to detect and show the framework’s hot-spots. It follows a multi-phased process that
starts from a JavaML base representation of the framework's source-code and evolves
through a series of XSL transformations until reaching the desired results. This ap-
proach intends to uncover the hot-spots of frameworks or applications, by identifying
templates and hooks and then grouping those using predefined heuristics.

The development of this approach was part of a dual-approach-based project using
JavaML [6] and Eclipse [2] in parallel. The results obtained with the XML-based
version of the HotSpotter tool were compared and validated against those of the simi-
lar Eclipse tool, using the JUnit [3] framework as a case-study.

Section 2 gives a brief explanation on the concepts of hotspots, template and hook
methods and their relationships. In order to maintain expressiveness, a few considera-
tions had to be made and specific domain definitions were adopted.

Section 3 describes the goals and the development methodology: a multi-step proc-
ess aiming at detecting and recognizing the relevant reusability structures and the
appropriate way of aggregating the results into two views for broader understanding.

In Section 4, all the process steps are explained in detail. Beginning at the JavaML
source code representation, several XSL transformations are applied accordingly to
achieve the desired outcome.

Section 5 illustrates some results after applying the process to the JUnit frame-
work, whereas Section 6 presents the conclusions and the forthcoming work.

2 HotSpots, Template Methods and Hooks Relationships

As a concept, a hotspot has its foundations built upon a framework’s Open-Closed
Principle [15]. This attribute describes the framework’s potential flexibility and
proneness to reuse. The principle encompasses two definitions: the “closed” and the
“open” parts. The latter represents the areas that are variant, configurable and re-
definable, whereas the former describes those areas that remain immutable, yet group
the variant parts together [14].

This combination of open and closed parts embodies the framework’s reusability
regions, the so called hotspots. The notions of template methods and hook methods
support adherence to the Open-Closed Principle as they materialize the concepts of
“open” and “closed”. A template (“closed”) method defines an invariant part of the
framework which links (“calls”) the hook (“open”) methods together. These hook
methods are the re-definable elements to where the user should aim at, thus adapting
the framework to provide a particular solution.

Cardino [1] states that “a reuser should not have to worry […], since hotspots
should be sufficient to customize the framework to new needs”. That is to say that the
awareness and understanding of hotspots is crucial to exploit the extensibility aspects
of a framework. Identifying these extensibility regions heightens the development
speed and improves the quality of the process [4].

According to [14], the relationship between templates and hooks translates into
what is called meta-patterns. These relationships can be observed through the analy-
sis of several design patterns [13]. Knowing the composing patterns of a framework’s
design enables the assertion of its degree of reusability. Starting from a lower level of
abstraction, one must first identify the templates and hooks contained in a framework
and then identify its relationships. Albeit seven known meta-patterns exist, as far as
hotspots are concerned, template methods and hook methods can be combined by
either inheritance or composition [12]:

1. Through Inheritance, abstract hook methods, defined in the same class as the
template method, are overridden in descendant classes (Fig. 1).

2. Through Composition, hook methods are defined in interface classes which are
subsequently implemented by one or more concrete classes. The template class
calls the hook methods defined in the interface, not knowing which concrete
class is implementing its behaviour. (Fig. 2). Many GoF design patterns base
their flexibility on this concept, such as Builder, Strategy or Bridge [13].

Fig. 1. Inheritance Template Method (IHS).

Fig. 2. Composition Template Method (CHS).

Upon template and hook detection and their relationship, one can group them into
hotspots. This raises a concern: expressiveness. This issue is addressed by [12] which
come up with a definition of hotspot, neither too fine-grained nor too course-grained:

[a hotspot is] a set of hook methods and their associated template methods, in
which each hook method is invoked by exactly the same set of template methods.

From this definition of a hotspot (Fig. 3), Schauer [12] divides them into two sub-
categories: IHS (Inheritance hotspots) and CHS (Composition hotspots). IHS stands
for hotspots exclusively based on Inheritance Template Methods (Fig. 1), whereas
CHS stands for hotspots exclusively based on Composition Template Methods (Fig.
2).

Fig. 3 Hot Spot definition, according to [12].

3 Goals and development methodology

The process of developing a tool for detecting and visualizing hotspots undertook
three successive steps:

1. Source Code Parsing. The primary step would be to parse through the source
code and identify the relevant elements, that is, candidate methods and their enclosing
classes that might be classified as templates or hooks.

2. Template/Hook detection heuristics. Upon gathering the filtered source code
elements, its structure and relationships would have to be confronted against the defi-
nitions of templates and hooks. Namely, methods that call other methods defined in
descendant classes (IHS approach) or in interface classes (CHS approach) would be
scrutinized.

3. Aggregate into hotspots and generate results. Coupling templates and hooks
would provide candidate hotspots. In order to conform to the pre-defined hotspot
definition, an aggregation step would have to take place to broaden the scope of the
detected areas of flexibility. Without loss of information, the collapsing of contiguous
candidate hotspots into a single element would define wider regions of reuse. Conse-
quentially, granularity would decrease and a better vision of the overall flexibility
would be easily acquired.

While detecting templates and hooks, two views emerged from the progressing de-
velopment and occurring results. Amidst the process, it made sense to come up with
two kinds of aggregation heuristics for candidate hotspots:

1. “Vista1” (View1). Each template method calls exactly the same hook methods,
grouping by the higher number of hook methods as possible. That is, templates and
hooks are joined together into a container-content structure. A template “contains”
(calls) a certain number of hooks. Aggregation of the final hotspots is then made by

intersecting the template methods through their hook set. The new hotspot is gener-
ated by maximizing the number of hooks methods intersected.

2. “Vista2” (View2). Each hook method is called by exactly the same template
methods. In this case, templates and hooks are joined together into a container-
content structure, having the hook as the container. The hook “contains” the tem-
plates which call it. Aggregation of the final hotspots is made by intersecting the
hooks through their templates set. The new hotspot is generated by grouping only
those hooks that have exactly the same templates as callers.
In the next section, a further insight of the JavaML approach will enlighten the
purpose behind these views.

4 JavaML Approach

The lack of a canonical structured representation of the java source code, and its
convenient plain-text representation to the programmers induced the need for a uni-
versal format, able to directly represent the program structure and its contents. This
transformation would supply other software tools with an easy platform for source
code analysis and manipulation. XML [5] presented itself as a good solution and led
to the creation of JavaML [6] [7]. The work presented in this paper followed a
JavaML approach, as it easily allows the manipulation of Java source code, providing
a simple and fast way of getting results.

4.1 System’s Overview

As mentioned before (see abstract) the JUnit framework was used as a case-study for
HotSpotter. The first step in the JavaML approach consisted in the transformation of
the JUnit java source code into JavaML files.

_______Extract of junit-all.java.xsl (abstract method declaration)______
 <method name="testEnded" id="Ljunit/runner/BaseTestRunner;testEnded(Ljava/lang/String;)V"
idkind="method">
 <modifiers>
 <modifier name="public"/>
 <modifier name="abstract"/>
 </modifiers>
 <type name="void" primitive="true"/>
 <formal-arguments>
 <formal-argument name="testName" id="Ljunit/runner/BaseTestRunner;arg391" idkind="formal">
 <type name="String" idref="Ljava/lang/String;" idkind="type"/>
 </formal-argument>
 </formal-arguments>
 </method>

______ Extract of junit-all.java.xsl (hook call by template method) _____
 <method name="endTest" id="Ljunit/runner/BaseTestRunner;endTest(Ljunit/framework/Test;)V"
idkind="method">
 <modifiers>
 <modifier name="public"/>
 <modifier name="synchronized"/>
 </modifiers>
 <type name="void" primitive="true"/>
 <formal-arguments>
 <formal-argument name="test" id="Ljunit/runner/BaseTestRunner;arg338" idkind="formal">
 <type name="Test" idref="Ljunit/framework/Test;" idkind="type"/>
 </formal-argument>
 </formal-arguments>

 <block>
 <send message="testEnded"
idref="Ljunit/runner/BaseTestRunner;testEnded(Ljava/lang/String;)V" idkind="method">
 <arguments>
 <send message="toString" idref="Ljava/lang/Object;toString()Ljava/lang/String;"
idkind="method">
 <target>
 <formal-ref name="test" idref="Ljunit/runner/BaseTestRunner;arg338"
idkind="formal"/>
 </target>
 <arguments/>
 </send>
 </arguments>
 </send>
 </block>
 </method>

The transformation was performed with the IBM Jikes Java Compiler [8] comple-
mented with the JavaML Patch for Jikes [9]. Next, the XML files generated were
packed into one single JavaML file with the root element <javaml>. Afterwards,
several XSL transformations [10] for both IHS and CHS methods and both “Vista1”
and “Vista2” views were applied, producing several XML outputs. Each of these last
XML outputs were then transformed by a PHP [11] script that grouped the hooks and
templates, producing a single final HTML presentation file containing the Hotspots
found in the JUnit framework. Fig. 4 shows the overall structure of this process.

Fig. 4. System Overview of JavaML approach.

4.2 XSL Transformations

Several XSL files were developed with the purpose of extracting relevant information
from the JavaML files. Each method (IHS and CHS) used the appropriate XSL.

For the IHS method the stylesheets do the following:
1. Capture of Hooks and Templates: templates are captured by searching the

JavaML file for the <method> tag with the abstract attribute. Hooks are captured by
searching for the <send> tag with a message attribute that refers the called method.

_________________ ihsa-vista1-getHooksandTemplates.xsl_________________
 <xsl:template match="javaml">
 <Java>
 <xsl:apply-templates select="//method/modifiers/modifier[@name='abstract']"/>
 </Java>
 </xsl:template>

 <xsl:template match="modifier">
 <xsl:param name="hookID" select="../../@id"/>
 <hook>
 <xsl:attribute name="name"><xsl:value-of select="../../@name"/></xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="../../@id"/></xsl:attribute>
 <xsl:if test="ancestor::class/@name">
 <xsl:attribute name="class"><xsl:value-of select="ancestor::class/@name"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:if test="ancestor::interface/@name">
 <xsl:attribute name="class"><xsl:value-of select="ancestor::interface/@name"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates select="//send[@idref=$hookID]"/>
 </hook>
 </xsl:template>

 <xsl:template match="send">
 <template>
 <xsl:attribute name="name"><xsl:value-of select="ancestor::method/@name"/></xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="ancestor::method/@id"/></xsl:attribute>
 <xsl:attribute name="class"><xsl:value-of select="ancestor::class/@name"/></xsl:attribute>
 </template>
 </xsl:template>

2. Invert the position of Hooks and Templates: this is only required for “Vista1”

view and it concerns grouping hooks inside a template, and not the contrary.
For the CHS method:
1. Capture of all abstract methods, all methods declared in interfaces and all vari-

ables used inside those methods: the methods are captured in a similar way as in IHS;
methods in interfaces are captured by searching the method declaration inside an
<interface> tag and variables are captured by searching the tags <field>, <lo-
cal-variable-decl> and <formal-argument> inside the captured methods.

_________________ chsa-vista1-getHooksandTemplates.xsl_________________
 <!-- Variables -->
 <xsl:template match="field">
 <field>
 <xsl:attribute name="id"><xsl:value-of select="@id"/></xsl:attribute>
 <xsl:attribute name="class"><xsl:value-of select="type/@name"/></xsl:attribute>
 </field>
 </xsl:template>
 <xsl:template match="local-variable-decl">
 <field>
 <xsl:attribute name="id"><xsl:value-of select="local-variable/@id"/></xsl:attribute>
 <xsl:attribute name="class"><xsl:value-of select="type/@name"/></xsl:attribute>
 </field>
 </xsl:template>
 <xsl:template match="formal-argument">
 <field>
 <xsl:attribute name="id"><xsl:value-of select="@id"/></xsl:attribute>
 <xsl:attribute name="class"><xsl:value-of select="type/@name"/></xsl:attribute>
 </field>
 </xsl:template>
 <!-- Abstract methods -->
 <xsl:template match="modifier">
 <xsl:param name="MethodId" select="../../@id"/>
 <xsl:for-each select="//send[@idref=$MethodId]">
 <hook>
 <xsl:attribute name="name"><xsl:value-of select="@message"/></xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="@idref"/></xsl:attribute>
 <xsl:if test="descendant::field-ref/@idref">
 <xsl:attribute name="classid"><xsl:value-of select="descendant::field-ref/@idref"/>
 </xsl:attribute>
 <xsl:attribute name="classtype">varclass</xsl:attribute>
 </xsl:if>
 <xsl:if test="descendant::var-ref/@idref">
 <xsl:attribute name="classid"><xsl:value-of select="descendant::var-ref/@idref"/>
 </xsl:attribute>

 <xsl:attribute name="classtype">varlocal</xsl:attribute>
 </xsl:if>
 <xsl:if test="descendant::formal-ref/@idref">
 <xsl:attribute name="classid"><xsl:value-of select="descendant::formal-ref/@idref"/>
 </xsl:attribute>
 <xsl:attribute name="classtype">varlocal</xsl:attribute>
 </xsl:if>
 <template>
 <xsl:attribute name="name"><xsl:value-of select="ancestor::method/@name"/>
 </xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="ancestor::method/@id"/></xsl:attribute>
 <xsl:attribute name="class"><xsl:value-of select="ancestor::class/@id"/>
 </xsl:attribute>
 </template>
 </hook>
 </xsl:for-each>
 </xsl:template>
 <!-- Interface methods -->
 <xsl:template match="method">
 <xsl:param name="MethodId" select="@id"/>
 <xsl:for-each select="//send[@idref=$MethodId]">
 <hook>
 <xsl:attribute name="name"><xsl:value-of select="@message"/></xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="@idref"/></xsl:attribute>
 <xsl:if test="descendant::field-ref/@idref">
 <xsl:attribute name="classid"><xsl:value-of select="descendant::field-ref/@idref"/>
 </xsl:attribute>
 <xsl:attribute name="classtype">varclass</xsl:attribute>
 </xsl:if>
 <xsl:if test="descendant::var-ref/@idref">
 <xsl:attribute name="classid"><xsl:value-of select="descendant::var-ref/@idref"/>
 </xsl:attribute>
 <xsl:attribute name="classtype">varlocal</xsl:attribute>
 </xsl:if>
 <xsl:if test="descendant::formal-ref/@idref">
 <xsl:attribute name="classid"><xsl:value-of select="descendant::formal-ref/@idref"/>
 </xsl:attribute>
 <xsl:attribute name="classtype">varlocal</xsl:attribute>
 </xsl:if>
 <template>
 <xsl:if test="ancestor::method/@name">
 <xsl:attribute name="name"><xsl:value-of select="ancestor::method/@name"/>
 </xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="ancestor::method/@id"/>
 </xsl:attribute>
 <xsl:attribute name="class"><xsl:value-of select="ancestor::class/@id"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:if test="not(ancestor::method/@name)">
 <xsl:attribute name="name"><xsl:value-of select="ancestor::constructor/@name"/>
 </xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="ancestor::constructor/@id"/>
 </xsl:attribute>
 <xsl:attribute name="class"><xsl:value-of select="ancestor::class/@id"/>
 </xsl:attribute>
 </xsl:if>
 </template>
 </hook>
 </xsl:for-each>
</xsl:template>

2. Capture the Classes where methods are declared: this is done by searching for

the idref attribute of the called method tag which relates to the variables declaration id
attribute.

3. Invert the position of Hooks and Templates: this is only required for “Vista1”
view and its purpose is similar to the explained before in the IHS method.

4.3 Hotspot Detection

After applying all the XSL transformations, the XML output result file is processed
by a PHP script that groups hooks or templates (depending whether its “Vista1” or
“Vista2” views) and detects possible hotspots, outputting them into a HTML file.

In both views, the flow and set of activities are the same:

1. Read the file;
2. Parse the XML structure;
3. Find and group the hotspots;
4. Show the results.

Reading the file and showing the results is trivial. A brief description of activities
2 and 3 follows:

Vista1. The XML structure is parsed into a hash container. Whenever a new tem-
plate is found, a new entry is inserted into the hash, with the template id being the key
and an empty array as its value. The template “hook method” ids will then be added
into this array.

At the end, a hash is available with all template ids as keys and the corresponding
hook ids as its values.

Next, an attempt is made to find and group the hotspots. For each template method
id in the hash, its hook methods are intersected with the remaining ones from the
other templates in the hash. If the result of this intersection is not empty, it will be the
key of a new hash with its value being an array with the corresponding templates. If
that hash key already exists, the template ids are added to the already existing array of
templates.

At the end, a new hash is available containing the candidate hotspots. Its keys are a
set of hooks, and its values the templates who call them.

Vista2. In this view, the document is parsed with the same method as in “Vista1”,
with one slight difference: since the XML structure was swapped to a “hook to tem-
plate” hierarchy, the resulting hash will contain all hook ids as keys and its values
being the template methods which call them.

Finally, to find and group the hotspots, the template ids stored in the first hash are
used as the key to a new hash of candidate hotspots. Its corresponding value is an
array with the hook methods which are called by exactly those templates.

5 Some Results

Figure 5 illustrates the results of applying the “Vista2” view to the JUnit framework.
In comparison with the similar tool developed for Eclipse, both “Vista1” and
“Vista2” produced perfect matches, despite a few glitches in “Vista1”, but of no rele-
vancy to the overall goal. This comparison served to prove that the proposed solution
produced accurate results and that the pre-defined heuristics for hotspot detection
were indeed valid.

Fig. 5. Vista2 HTML generated results.

6 Conclusions and Future Work

This paper presented a JavaML-based approach to detect hotspots using successive
XSL transformations over a multi-phased evaluation process. Using the JUnit frame-
work as a case study, the results were confronted against a similar tool for Eclipse,
proving the efficiency of the approach and validating its results. Despite the possibil-
ity of performing all the transformation steps using XSL, a final step was made using
PHP. This decision had to do with project development schedule restrictions only,
and not technological issues regarding XSL. At the time of development, PHP served
as a quicker developing platform in order to uphold the project’s deadline. At the
writing of this article, the PHP step was being converted into XSL, with satisfying
results. As future work, this approach could be extended to include the following
features:

– Convert the PHP step to XSL (currently underway).
– Detect all seven relationships between templates and hooks (meta-patterns).
– Extend the JavaML notation to include “flexibility-oriented” tags, thus enriching
the code representation.
– Infer what kind of design patterns can be found on the code with a degree of
certainty.

References

1. Guido Cardino et al. “The Evaluation of Framework Reusability”. ACM SIGAPP. Volume
5, Issue 2. September 1997

2. Eclipse website - http://www.eclipse.org .
3. JUnit website - http://www.junit.org.
4. Garry Froelich et al. “Hooking into Object-Oriented Application Frameworks”. 19th Interna-

tional Conference on Software Engineering. 1997.
5. XML – eXtensible Markup Language (website). http://www.w3.org/XML/.
6. Greg Badros. “JavaML: A Markup Language for Java Source Code”. 9th International World

Wide Web Conference. 2000.
7. Ademar Aguiar et al. “JavaML 2.0: Enriching the Markup Language for Java Source

Code”. XATA. 2004.
8. IBM Jikes Java Compiler - http://www-124.ibm.com/developerworks/opensource/jikes/.
9. JavaML Patch for Jikes website- http://www.cs.washington.edu/homes/gjb/JavaML/.
10. XSL website- http://www.w3.org/Style/XSL/.
11. PHP website - http://www.php.net/.
12. Reinhard Schauer. “Hotspot Recovery in Object-Oriented Software with Inheritance and
Composition Template Methods”. ICSM. 1999.
13. Erich Gamma et al. “Design Patterns: Elements of Reusable Object-Oriented Software”.

Addison-Wesley. 1995.
14. Wolfgang Pree. “Design patterns for object-oriented software development”. Addison-

Wesley. 1995.
15. Martin, R. “The Open Closed Principle”, C++ Report, 1996

