
Configuring Web Wizards in XML

Marcos Aurélio Domingues and José Paulo Leal

DCC-FC & LIACC, University of Porto
R. Campo Alegre, 823 – 4150-180 Porto, Portugal

{marcos,zp}@ncc.up.pt

Abstract. A “wizard” is a common pattern used in graphical inter-
faces when an application needs to collect a large number of parameters.
Wizards use progressive disclosure to present windows with small sets of
parameters, and parameters selected in the first windows control those
presented in subsequent windows. This concept of wizard can also be
used to develop web interfaces to existing monolithic systems that lack a
GUI of some sort and would benefit from being accessible on the Internet.
In this paper we propose a framework for developing web wizards whose
extension points are XSLT transformations based on a XML description
of the systems parameters. With this approach the system and its web
interface are loosely coupled and thus parameters can be changed or
mapped differently into the system just by reconfiguring XML files.
This framework has been tested in the development of web wizard for
a system that generates mathematics exercises using constrained gram-
mars. The system, developed within project AGILMAT, has a large num-
ber of parameters that difficult its use by novice users. This paper also
describes a number of features that were developed for the AGILMAT’s
web wizard.

1 Introduction

Most systems are designed with an users interface in mind. Nevertheless, there
are cases where complex systems are developed with a poor users interface and
thus need to be re-engineered in order to made them available to a larger user
base. This is often the case with systems that steam out of research projects
since they were developed around concepts that were not completely defined in
the design phase. Understandably, these systems have a large set of parameters
that must be exposed in the users interface.

In order to develop web interfaces to existing systems that lack a GUI of
some sort, we propose a framework for developing web wizards interfaces whose
extension points are XSLT transformations based on a XML description of the
systems parameters. With this approach the system and its interface are loosely
coupled and thus parameters can be changed or mapped differently into the
system just by reconfiguring XML files.

Decoupling the users interface from the systems core is consensually recog-
nised as an important design principle. In our approach with take this principle
a step further. Since parameters are defined in configuration files, they can be

easily added, changed or removed from the web interface. This feature is spe-
cially important in systems that are still being used in research. In these systems,
changes in configuration parameters are frequent and user interfaces cannot be
designed around rigid concepts.

Communication between the web server that manages the interface and the
system is made trough input/output (I/O) streams. The parameters collected in
the interface are converted into system commands using XSLT transformations
and injected into its standard input stream. Data returned from the system’s
output stream is converted to XML and processed with XSLT transformation
back into the web interface.

We claim that the approach we purpose is effective for developing a web
interface to systems when certain condition are present:

– it was developed without an users interface in mind;
– it has a large number of configuration parameters;
– it has a small number of (ideally a single) actions;
– it can be fully controlled trough standard input/output.

All these conditions are met in AGILMAT. The goal of this research project
is to produce a system to generate high-school and pre-university level exercises
of mathematics. Exercises are generated using constrained grammars that are
configurable by an extensive set of parameters. This system is implemented in
Prolog and can be controlled by executing goals in the interpreters shell.

The ultimate goal of AGILMAT is to provide a tool for teachers available
on the web. A first web interface was developed to AGILMAT and is currently
being used for testing purposes in the development of the system [1]. This first
web interface was tested with a focus group of high-school teachers. The results
gathered from this experiment convinced us that the web interface would have
to be profoundly changed, in order to reduce the actual number of parameters
that a typical user would have to set.

This paper is organized as follows. We start by presenting the framework
proposed for developing web wizards using XML (sect. 2). In Section 3 we present
a case study where our framework has been tested in the development of web
wizard for the AGILMAT. We also describe a number of features that were
developed for the AGILMAT’s web wizard. Then we conclude suggesting a few
of the possible lines of future work (sect. 4).

2 A Framework for Developing Web Wizards

In this section, we present the framework proposed to make easier the devel-
opment of web wizards. The key points of this framework consist in storing
a XML description of the parameters of a system into a file and using XSLT
transformations on this file to get the web wizards that will facilitate the config-
uration of the system parameters. The XSLT transformations act as extension
points between the web wizard and the the system. The framework is illus-
trated in Fig. 1: browser, web wizard generator and system are represented as

strong squares, points of transformation are represented as strong T labeled cir-
cles, physical files with XML documents are represented as strong file icons and
XML documents in memory are represented as dotted file icons.

Fig. 1. Framework for Developing Web Wizards.

In Fig. 1, the file param.xml stores a XML description of the system pa-
rameters. This file is loaded to a DOM object and used with others document
objects to make the XSLT transformations that generate the web wizards. The
wizards generator has two other DOM objects in memory: options.xml and
result.xml.

The DOM object options.xml manages and collects the parameters that are
sent to the monolithic system. When the web wizards generator is initialized,
the document options.xml is also initialized with the parameters from the file
param.xml. This initializing process consists in applying XSLT stylesheets on
the file param.xml. These generate the web wizards HTML and load the system
parameters to the document options.xml. This document is never serialize into
the file system. During interaction, the document options.xml is updated with
the parameters received from the user browser.

XSLT transformations are also responsible for the appearance of the web
wizards. In this way, to change the appearance of the web wizards, we only need
to edit the appropriated XSLT stylesheets.

When the interaction requires executing an action in the system, the param-
eters in the document options.xml are convert to commands of the system.
The conversion of formats is made using the document wizard2system.xsl to
perform a XSLT transformation injected in the systems’s standard input.

The DOM object result.xml stores the results from the system, in XML
format. System output in XML format is integrated in the web wizards generator
using also a stylesheet. This requires a previous conversion of the system output
into XML format. The conversion can be performed either in the system or in
the generator.

In this framework, when the need to add or change a parameter to the system
arises, it is only required to edit the files param.xml, wizard2system.xsl and/or
system2wizard.xsl. The programmer does not need re-write and re-compile the
web wizards generator.

In the next section, we present a case study where our framework has been
tested in the development of web wizard for a system that generates mathematics
exercises using constrained grammars.

3 Case Study

In this section we describe the application of our framework to the project AG-
ILMAT - Automatic Generation of Interactive Drills for Mathematics Learn-
ing [1, 2].

The project AGILMAT [1, 2] aims at developing a system of Constraint Logic
Programming [5] to automatic generation and explanation of mathematics exer-
cises that is flexible enough to be easily customizable to different curricula and
users. Its major guiding principles are: the abstraction and formal representation
of the problems that may be actually solved by algebraic algorithms covered by
the curricula, the customization of these models by adding further constraints,
and designing flexible solvers that emulate the steps students usually take to
solve the generated exercises.

3.1 Architecture of the AGILMAT System

To make the AGILMAT system available for students and teachers, we use our
framework to develop a web wizard. In Fig. 2 we present the contextualization of
the AGILMAT system inside the framework proposed to develop web wizards:
web wizard generator, cache and AGILMAT system are represented as strong
squares and rectangles, internal modules of the AGILMAT system are repre-
sented as dotted rectangles, points of transformation are represented as strong
T labeled circles, switcher is represented by strong rhombus, physical files with
XML documents are represented as strong file icons and XML documents in
memory are represented as dotted file icons. We also have a small screenshot of
the web wizard developed for the AGILMAT system.

In the AGILMAT system (Fig. 2) there are two main modules that are writ-
ten in Prolog and act as filters: the expression generator processes the user
constraints and produces an expressions and types file, the exercise generator
and solver processes this file and produces exercises and theirs solutions. This
last module is the control of the system and makes use of several libraries that

Fig. 2. Contextualization of the AGILMAT system in the framework for developing
web wizards.

handle arithmetics, set operations and symbolic constraints (to solve inequations,
disequations and equations).

The AGILMAT’s web wizards uses the document system2wizard.xsl to
convert the exercises and theirs solutions, represented by prolog predicates and
clauses, to a XML representation. With a XML representation, we can further
transform the exercises to the format XML - Question & Test Interoperability
(XML - QTI) [3] with mathematical expressions represented in MathML.

In the current version, exercises and theirs solutions are converted to a LATEX
representation that is converted to different formats, such as: HyperText Markup
Language (HTML), Portable Document Format (PDF) and PostScript (PS). The
PDF file is embedded in the web interface. We are not yet using the document
system2wizard.xsl to convert the exercises and theirs solutions to a XML
representation. We hope to use this document in the next version of AGILMAT.

The web wizard of AGILMAT collects and manages a set of options to control
the generation of mathematics exercises. As explained in Section 2, the web
wizards generator is responsible for managing the user-system interaction. It
receives data from the file param.xml and HTML forms, makes several XSLT
transformations, produces the user constraints and runs the AGILMAT system
to generate the exercises. The web wizard generator has been written in Java.

The current release of AGILMAT takes a considerable time to generate exer-
cises. To improve the response time of the system we developed a cache system.
When the cache is activated, the web wizard looks up a set of exercises previously
generated with the same configuration values. We expect that most teachers will
initialize using the default values, or changing only the parameters presented

in the first screen. The cache system will provide them with almost imediate
feedback in these first atempts that will encourage them to explore AGILMAT
and set parameters that will generate exercises more adapted to their goals.

3.2 Using AGILMAT Web Wizard

In Fig. 3 we present a screenshot of the first screen of the web wizard of AG-
ILMAT. The most recent release of the system is available at http://www.ncc.
up.pt:8080/Agilmat.

Fig. 3. Screenshot of the first screen of the AGILMAT wizard.

A novice user of AGILMAT starts generating exercises defining only a min-
imal set of options. In particular the user can define a profile of exercises that
will be generated. This makes the system initialize the range of each parameter
of AGILMAT system with suitable default values. These values may correspond
not only to grade levels (Tenth grade, Eleventh grade, etc) but also to specific
topics of the curricula. The advantage of this option is to allow novice users to
generate exercises for their particular needs without having to set a large number
of parameters.

The user can also define the quantity and types of exercises that will be gener-
ated. The available types are “Compute the domain”, “Study the sign variation”
and “Solve (in)equations”. Exercise sheets may contain several different types
of exercises. The user can generate exercises immediately after setting these
parameters and expect them to be adequate to his or her needs.

Afterwards, the user can change the quantity and difficulty of each sub-
expression that can appear in exercises (second screen of the AGILMAT wizard,
ilustrated in Fig. 4). These parameters give extra control over the generated
exercises. Each parameter has a selection with certain number of options. The
available parameters, their options and default values are dependent from the
initial selection of exercise profile.

Fig. 4. Screenshot of the second screen of the AGILMAT wizard.

3.3 Configuring AGILMAT’s Web Wizard

The first AGILMAT web interface was tested with a focus group of high-school
teachers. The results gathered from this experiment convinced us that the web

interface would have to be profoundly changed, in order to reduce the number
of parameters that a typical user would have to set.

Taking this fact in consideration, we decided to group the system parameter
into profiles in such way that the choice of a profile would set the parameters
default values and hide irrelevant parameters. In Fig. 6 we present fragments of
the file param.xml that focus on a profile. The node configs is the root node
of the file param.xml. The elements profile contain a set of parameters that
represents a grade level or a specific topic of the curricula, as for example, the
type of the exercises that will be generated. We can have simple parameters
or composition of parameters, that can have one or more values. The element
option represents a simple value and the element options represents an interval
of values. Parameters can be hidden from the user by changing the attribute
isVisible.

<!-- ... others parameters ... -->

<parameter isVisible="true" id="rdivisao" name="divisao">
<option label="Hard" value="8"/>
<option label="Medium" value="5" default="true"/>
<option label="Easy" value="3"/>

</parameter>

<!-- ... others parameters ... -->

<parameter isVisible="false" id="rdivstype" name="divstype">
<option value="" exprs="$rdivisao + 2" default="true"/>

</parameter>

<!-- ... others parameters ... -->

Fig. 5. Interdependency between two parameters.

In a profile, parameters value can be computed from the values of others
parameters. In Fig 5 we show how the expression $rdivisao + 2 sets the value of
parameter divstype where $rdivisao references the value of another parameter.

Managing a large number of profiles with common parameters in a single
param.xml is too canbersome. To deal with this problem, we implemented pro-
file inheritance to reuse profile definitions, and made use of the XML inclusion
mechanism to split the configuration document in several files. In Fig. 6 the
element profile presents the attribute extends whose value is the name of
the extended profile. The extension can be done between profiles in the same
or in different files using xinclude [4]. An example of the inclusion mechanism
xinclude is presented in Fig. 6.

<?xml version="1.0" encoding="UTF-8"?>

<!-- ... others elements ... -->

<configs>

<profile name="p11" label="Grade Level - 11" extends="p01">

<screen_wizard name="first">
<parameter isVisible="true" id="qtyexe" name="quantity_exercise" >

<options start="5" end="30" step="5" default="5"/>
</parameter>

<!-- ... others parameters ... -->

<composite label="Types of exercises" isVisible="true">
<parameter hasDependents="false" isVisible="true" id="edom" name="domain">

<option label="Compute the domain" value="false" default="true"/>
</parameter>
<parameter hasDependents="true" isVisible="true" id="econ" name="constraint">

<option label="Solve (in)equations: Expression" value="false" default="true"/>
</parameter>
<parameter depends="econ" isVisible="true" id="econccond" name="cond">

<option value="0" default="true"/>
</parameter>
<parameter depends="econ" isVisible="true" id="econoeq" name="eq">

<option label="=" value="false" default="true"/>
</parameter>

</composite>
</screen_wizard>

<screen_wizard name="second">
<parameter isVisible="false" id="rabsquotbasic" name="absquotbasic">

<option value="100" default="true"/>
</parameter>

<!-- ... others parameters ... -->

<composite label="Quotient of Functions" isVisible="false">
<parameter isVisible="false" id="fmidivbasic" limit="min" name="divbasic">

<options start="0" end="2" step="1" default="1"/>
</parameter>
<parameter isVisible="false" id="fmadivbasic" limit="max" name="divbasic">

<options start="0" end="2" step="1" default="1"/>
</parameter>
<parameter isVisible="false" id="rdivstype" name="divbasic">

<options start="0" end="2" step="1" default="2"/>
</parameter>

</composite>

<!-- ... others composites ... -->

</screen_wizard>

</profile>

<!-- ... others profiles ... -->

<xi:include href="param01.xml" xpointer="p01" xmlns:xi="http://www.w3.org/2001/XInclude"/>

</configs>

Fig. 6. Fragments of the file param.xml.

4 Conclusions and Future Work

In this paper we propose a framework for developing web wizards whose exten-
sion points are XSLT transformations based on a XML description of the systems
parameters. With this approach the system and its web interface are loosely cou-
pled and thus parameters can be changed or mapped differently into the system
just by reconfiguring XML files. We have successfully tested our framework in the
development of web wizard for a system that generates mathematics exercises
using constrained grammars. The system, developed within project AGILMAT,
has a large number of parameters that difficult its use by novice users.

As future work, we plan to developt a document system2wizard.xsl to con-
vert the exercises and theirs solutions from the AGILMAT system (represented
by prolog predicates and clauses) to a XML representation, completing the pro-
posed framework inside the project AGILMAT. With a XML representation, we
will can make many others transformations, as for example, to transform the ex-
ercises to the format XML - Question & Test Interoperability (XML - QTI) [3].
We also plan to test our framework by developing a web wizards generator for
an application with characteristics differents of the AGILMAT system. This will
help us to better identify the features that are common to the framework and
separate them from those specific to AGILMAT.

Acknowledgements

This work is partially supported by Fundação para a Ciência e Tecnologia (FCT),
and Program POSI, co-financed by EC fund FEDER, under project AGILMAT
(contract POSI/CHS/48565/2002).

References

1. A. P. Tomás, J. P. Leal. A CLP-Based Tool for Computer Aided Generation and
Solving of Maths Exercises. In V. Dahl, P. Wadler (Eds), Practical Aspects of
Declarative Languages, 5th Int. Symposium PADL 2003, Lecture Notes in Com-
puter Science 2562, Springer-Verlag (2003) 223–240. c©Springer-Verlag.

2. A. P. Tomás, N. Moreira, N. Pereira. Designing a Solver for Arith-
metic Constraints to Support Education in Mathematics. DCC-
FC & LIACC, University of Porto, August 2005. (working paper)
www.ncc.up.pt/~apt/AGILMAT/PUBS/solver-Aug05.pdf

3. IMS QTI Specifications. IMS Global Learning Consortium, Inc.
www.imsglobal.org/question/index.html.

4. XML Inclusions (XInclude) Version 1.0. W3C Recommendation 20 December 2004.
www.w3.org/TR/xinclude/.

5. Marriott, K., and Stuckey, P.: Programming with Constraints – An Introduction.
The MIT Press (1998)

