
A XML Data Dictionary and Document Representation
Framework for Binary File Structure Description

Nuno Viana1 and João Moura-Pires2

1 Deimos Engenharia, Avenida D. João II, Lote 1.17, 8ºB, 1998-023 Lisbon, Portugal
nuno.viana@deimos.com.pt
http://www.deimos.com.pt

2 CENTRIA/FCT, Quinta da Torre, 2829 -516 Caparica, Portugal
jmp@di.fct.unl.pt

http://centria.di.fct.unl.pt/~jmp

Abstract. System interface specification documents are hard to maintain up-
dated, mainly due to the fact that the frequency of new improvements/ addi-
tions of new systems is high. To facilitate maintenance of existing interface
specifications and enhance its usability, the development of a formal language
specification, to address the definition and description of EUMETSAT’s
(European Organisation for the Exploitation of Meteorological Satellites)
ground segment’s system interfaces was envisaged. The language specification
mechanism enables representation of binary message’s structure, exchanged be-
tween EUMETSAT’s systems. Additionally, the same definitions (derived from
the specification language) can be embedded in automatically generated inter-
face description documentation. In this manner, documents, become more than
simple crystallized human-readable specifications. Document embedded data
becomes “computable” and prone to be re-used by external tools, for generic
data volume estimations and binary file structure validations. This paper fo-
cuses on the implementation details of a supporting XML Framework and its
associated tools.

1 Introduction

The Operations Department at EUMETSAT[1] is currently responsible for the devel-
opment and maintenance of several software and hardware infrastructures (also com-
monly known as facilities), which perform generation, archival and dissemination of
meteorological products to all regional meteorological European member centres.

These facilities make extensive use of protocols based on binary messages for both
control and transfer of meteorological raw/data products between systems (e.g. At-
mospheric Motion Vectors, Clear Sky Radiances, Cloud Analysis, Cloud Top Height,
Sea Surface Temperature, Total Ozone, Tropospheric Humidity – for a complete list
of EUMETSAT available list of products, please refer to [2]). Specification of valid
binary message structures and system interface descriptions is currently performed
via creation of Interface Control Documents (ICD).

With the constant improvement of EUMETSAT’s Ground Segment systems facili-
ties, specifications have been subjected to successive updates. The complexity of the
protocols (which rely on binary messages, reaching the Gigabyte order of magnitude)
and the improvement of protocols (which are created to support new meteorological
data products), generate high network traffic, thus making debugging, maintenance,
development and deployment activities extremely difficult.

Nowadays, specifications for the EUMETSAT’s system interfaces are maintained
as interdependent Word documents (i.e. documents may contain references to specifi-
cations present in external documents), on which coherency and consistency is diffi-
cult to guarantee. Moreover, document contents are not computable (i.e. document
data is generated for human-reading purposes only).

Enhancing the usability of documentation’s contents, by transforming them into
dynamically generated documents (containing “computable” specifications) repre-
sented in a suitable format, thus enabling the development of more generic document-
driven tools, is one of the main objectives for this activity. Furthermore, migration of
existing specification documents into the new format is also envisaged within the
scope of this project.

This paper introduces a formalization approach for definition of a binary data mes-
sages’ structures and definition of dynamically generated specification documents,
which re-use the previously mentioned definitions. The first section (current) intro-
duces the context of the activity. Afterwards, in the second section, the authors unveil
the structure of the binary messages. In the third section the specification language
used to describe the structure of the binary messages is presented. Further ahead, on
section 4, the envisaged XML solution is described, with a special focus on the pro-
posed model mechanism. Afterwards, the authors describe the operational tools
which take advantage of this solution (section 5). Finally, on section 6 the authors
discuss the conclusions and envisaged future work in the line of the present activity.
Finally, the interested reader may find additional information concerning the work
being described in this paper in section 7.

2 Binary Message Structure

In order to better understand the binary messages’ structure we will follow a top-
down descriptive approach. Firstly, the binary File/Packets’ structure will be dis-
cussed. Afterwards, we will address the definition of Application Data Units (ADU)
and finally the binary structure definition specification language will be presented as
well as encoding/decoding rules.

2.1 Ground Segment Packets and Files

Binary messages exchanged between the different facilities in the EUMETSAT
Ground Segment, use two types of transfer services (i.e. packet transfer and file trans-
fer services) and are codified as binary data streams. Binary messages can therefore
be divided into two sub-groups: “Packets” or “Files”, which have a pre-defined struc-

ture built on ADU definitions, as described by the following Figs. 1 and 2 (optional
fields are identified by dashed-line boxes):

Packet
Header

Packet Data Field

Packet Sub Header Packet Body Packet Error Control

ADU
(GP_PK_HEADER)

ADU
(GP_PK_SH1 / GP_PK_SH2)

ADU1
(any)

ADU2
(any)

ADUn
(any)

... ADU1
(any)

ADU2
(any)

ADUn
(any)

...

Ground Segment Packet

Fig. 1. Structure of a Ground Segment Packet (“Packet Header”, “Packet SubHeader”, “Packet
Body” and “Packet Error Control”).

File
Header

File Data Field

File Sub Header File Body

ADU
(GP_F1_HEADER)

ADU
(GP_PK_SH1 / GP_PK_SH2)

ADU1
(any)

ADU2
(any)

ADUn
(any)

...

Ground Segment File

File
Name

ADU
(GP_F1_NAME)

Fig. 2. Structure of a Ground Segment File (“File Name”, “File Header”, “File SubHeader” and
“File Body”).

File or Packet

ADU X ADU Y...

Header Sub
Header Body Error

Control
File

Name

Le
ve

l1
Bi

na
ry

M
es

sa
ge

Le
ve

l2
Se

ct
io

ns
Le

ve
l3

A
pp

.
D

at
a

U
ni

ts

Simple ComplexNull Any Constant Referenced ADU

Le
ve

l4
Si

m
pl

e
&

Co
m

pl
ex

Ty
pe

s

Signed
Integer

Unsigned
Integer Enumerated Real Boolean BitString Character

String
Octet
String Time Relative

Time Deduced Array Choice Record

Le
ve

l5

Pa
r a

m
.

T y
pe

s

Boolean

Boolean
Byte

Boolean
Short

Boolean
Long

Enumerated

Enumerated
Byte

Enumerated
Short

Enumerated
Long

Enumerated
Size

Unsigned

Unsigned
Byte

Unsigned
Short

Unsigned
Double

Unsigned
Size

Integer

Signed Integer
Byte

Signed Integer
Short

Signed Integer
Double

Signed Integer
Size

Real

Real
Double

Bit
String
Size

Variable
Bit

String
Prefixed

with
Length

Variable
Bit

String
Not

Prefixed
with

Length

Character
String
Size

Variable
Character

String
Prefixed

with
Length

Variable
Character

String
Not

Prefixed
with

Length

Character
String
Size

Variable
Character

String
Prefixed

with
Length

Variable
Character

String
Not

Prefixed
with

Length

Time CDS

Time CDS
Short

Time CUC
Size

Time CDS
Expanded

Time
Generalized

Time
Generalized
Expanded

Relative
Time

Deduced 0

Deduced 2

Le
ve

l6
Pa

ra
m

et
er

Fo
rm

at

Fig. 3. Hierarchy of concepts showing how a Binary File/Packet can be specified using Appli-
cation Data Unit which are defined using the formalized specification language using Simple,
Complex and additional types (Null, Any, Constant and Referenced ADU).

As illustrated by the previous picture, a Ground Segment Packet is formed by a
“Packet Header” (of type “GP_PK_HEADER”). Optionally, it can also be composed
by an additional “Packet SubHeader” (of type “GP_PK_SH1” or “GP_PK_SH2”), a
“Packet Body” (formed by any sequential collection of one or more ADU defini-
tions). Finally, the “Packet Error Control” field can also be appended to the previous
fields. In the same manner as the Ground Segment Packet definition, Ground Seg-
ment File definitions are also composed by a “File Header” (of type
“GP_F1_HEADER”), an optional “File SubHeader” (of type “GP_F1_SH1”) and a
“File Body” (sequential composition of one or more ADU definitions). In addition, a
Ground Segment File definition also contains the file naming convention to be used
when naming files.

2.2 Application Data Units

Ground Segment engineers should define ADU (Level 3) types in order to form col-
lections of sections for Binary File and Packet structure descriptions (Level 2). By its
turn, each ADU makes use of an arrangement of simple and complex types (Level 4),
including default and optional values.
Here is an example of an Application Data Unit definition (“GP_F1_SH1” – General
Purpose File Sub Header type 1):

GP_FI_SH1 ::= RECORD

{SubheaderVersionNo UNSIGNED BYTE,
ServiceType GP_SVCE_TYPE,
ServiceSubtype UNSIGNED BYTE,
FileTime TIME CDS SHORT,
SpacecraftId GP_SC_ID,
Description CHARACTERSTRING SIZE (187)}

2.3 Encoding Rules

Previously, the hierarchy of concepts, which enable the specification of the binary
File’s and Packet’s structure, has been described. We will now turn our attention to
how the field values are in fact read and written from/to binary Files and Packets. In
the frame of the EUMETSAT’s Meteosat Second Generation Programme’s Ground
Segment systems, each binary value can be clearly identified by a set of attributes
which define:

� The field type is represented under the form of a code, known as PTC (Parame-

ter Type Code). E.g. Boolean(1), Integer(4), Unsigned Integer(3), Real(5), etc.
This field is of type ENUMERATED_BYTE with a length of 1 byte.

� The representation format for the field is represented under the form of a code,
known as PFC (Parameter Format Code). E.g. IntegerByte(4), Integer Short(12),
Integer(14), Integer Double(16). This field can be of either
ENUMERATED_BYTE (for fixed-length fields) or ENUMERATED_SHORT
(for variable-length fields) with respective lengths of 1 and 2 bytes, respectively.

� The length of the parameter data field, known as PDL (Parameter Data Length),
only valid for variable-length data types (variable string derived types such as
CHARACTERSTRING, BITSTRING and OCTETSTRING). This value is of
type SHORT_UNSIGNED and has a size of 2 bytes.

� The data value itself. Its type depends on the PTC and PFC values (when the
field encoding type is “explicit” or if “implicit”. In the context of our activity, bi-
nary data representation is possible through two methods for encoding simple pa-
rameter field values:

a) “Explicit” method, where each value is preceded by an indication of the field

type that follows, as well as the format for the type.
b) “Implicit” method, where only the parameter value exists. That is the pa-

rameter type and format are assumed to be commonly agreed by the applica-
tions, which perform the encoding and decoding of the binary values.

PTC PFC PDL PD

This value is always
present in the binary
file’s structure.

Only present when
the field value has a
variable length.

Only present when the
field value codification
is “explicit”.

(1byte) (1byte for fixed-length,
2byte for variable-length)

(2byte) (PDL/PTC&PFC when
explicit/ application

defined when implicit)

Fig. 4. Codification mechanism used for representation of a field value in the binary messages
exchanged between the EUMETSAT’s Ground Segment’s systems.

On the previous figure, one may find the required and optional fields necessary to
encode/decode binary values from the exchanged messages. When a value is “explic-
itly” encoded, the binary field (stored on the binary file) is prefixed with the PTC and
PFC values. If in addition, the field has a variable length, the value is firstly prefixed
with its size (PDL), resulting in the structure above (see Fig. 4). There is no explicit
method for the complex types (i.e. no PTC and PFC fields). However, when a com-
plex type is declared “explicit”, its components (that is to say, all simple types) inher-
ent this attribute’s flag value. In short, when “explicit” encoding is used, this means
that before reading the actual field value from the binary file, an application should
first read its type code (PTC), format code (PFC) and its size fields from the binary
file (if the field has a variable length specification). On the opposite side, when de-
clared “implicit”, applications assume a commonly agreed type and format for inter-
preting binary values read/written from/to files.

3 Specification Language

On the previous section (2), we have seen how the binary messages (packets and
files) can be decomposed into simple component structures and how their identifica-
tions are encoded in the binary file.

In this section, the authors will address the formalization of a specification lan-
guage, which was envisaged to characterize the binary structure for files and packets.
The formalization of the specification language has been described using a BNF
(Backus-Naur Form) notation and comprises “Simple Types” (the atomic types) and
“Complex Types” (array, choice and record structures). Additionally, the specifica-
tion language was enriched by the authors with new types such as “Null”, “Any” and
“Referenced” types.

3.1 Simple Types

Simple types should be understood as the atomic type definitions, which exist in the
specification language. The language comprises “Boolean”, “Enumerated”, “Un-
signed Integer”, “Signed Integer”, “Real”, “Bit String”, “Octet String”, “Character
String”, “Absolute Time”, “Relative Time” and “Deduced” types (see Level3 in Fig.
3).

3.2 Complex Types

In addition to the simpler atomic type definitions, the language also incorporates the
notion of complex structures built on previous defined Simple Types:

1. Array – An ordered set of a fixed or variable number of fields (array elements) of

the same simple or complex type (e.g. Array of Array).
2. Record – An ordered set of a fixed number of fields (components) of any simple

or complex type (e.g. Record with component1=Array and component2=Integer).
3. Choice – A set of complex or simple fields, from which one can be selected

based on the context and determined at application runtime (e.g. Choice with
component1=Signed Integer and component2=Unsigned Integer).

3.3 Complementary Types

In addition to the simple and complex types, the authors decided to introduce into
the specification language other high-level types such as “Constant”, “Null”, “Any”
and “Referenced ADU” (due to representation requirements). “Constant” types (as
the name implies) allow definition of environment constants, which can be of type
Signed and Unsigned Integer, Real and Characterstring. “Any” allows definition of a
field value without specifying its type or internal structure, while “Null” defines an
element, which has no assigned type or field value. Finally, yet importantly, there is a
special type, which was introduced in this specification language to allow re-usage of
existing ADU definitions (“Referenced ADU”) inside other ADU. Below you can
find three examples of variable definitions using the specification language:

Day ::= ENUMERATED SIZE (4)
 {Mon, Tue, Wed, Thu, Fri, Sat, Sun, NotADay (OTHERS)}

NumericValue ::= EXPLICIT CHOICE
 {UnsignedType UNSIGNED,
 IntegerType INTEGER,
 RealType REAL}
Example ::= VARIABLE ARRAY SIZE (1..4) OF RECORD
 {Date TIME GENERALIZED,
 DayOfWeek Day,
 Filler BITSTRING SIZE (4),
 ParameterName CHARACTERSTRING SIZE (6),
 ParameterValue NumericValue,
 Unit CHARACTERSTRING SIZE (4)}

4 The XML Framework Solution

Previously (section 2), we have described the internal structure for the binary mes-
sages (files and packets) exchanged between the different EUMETAT system facili-
ties. Moreover, a formalization of a specification language capable of describing the
complex structure of the binary messages was presented in section 3. We are now
going to describe the envisaged solution and its main functionalities.

4.1 Goals

Defining a specification language for description of binary messages, addressed part
of the problem. Users have expressed their desire to be able to represent the language
in such as way that it would be easily manageable and computable. XML was then
selected as a natural candidate for representation of the both the specification lan-
guage. XML is computable and there is a variety of XML manipulation tools freely
available to users.

In addition to the formalization of the binary message specification language using
XML, it was envisaged that the definition of files/packets including its internal struc-
ture (headers, sub-headers, body and so on), which are composed by ADUs would
also be performed via XML. This would allow the full representation of files/packets
under XML format. In order to maintain ICD (system interface specification docu-
ments) updated, it was also proposed to transform existing documentation into a
XML based format. By this manner, documents would be able to embed binary
file/packet “computable” definitions based on XML, capable of being used by exter-
nally developed tools, while minimizing necessary user intervention during document
updates (references to files/packets and ADUs specifications are dynamically updated
upon user request). This proposed approach, opens a path for development of more
generic tools, in less time with less effort (e.g. computation of data volume estima-
tions for generated network traffic between facilities and estimation of archival allo-
cation requirements for generated data products).

4.2 The Proposed Model

Users wanted to be able to specify the collection of ADUs (Application Data Units)
and the binary messages’ structure (sequential composition of ADUs). Since ADUs
are defined using the formalized specification language components in section 3, the
XML-based framework model included the ability to firstly define the specification
language. A language vocabulary for specification of the specification language was
then designed and implemented (see a in Fig. 5 a) and b))

DEDSL

(Data Entity Dictionary Specification Language)

MSG GS Simple & Structured
Data Types Definitions

(Extension)

MSG GS Data Entity Dictionary

MSG GS Application Data Units

MSG GS MSG GS Application Application Data Data Units GeneratorUnits Generator

<included>

XSDXSD XSDXSD

XSDXSD

XMLXML

XSLXSL

(a)

(d)

(b)

(e)

<derived>

(c)

Fig. 5. Engineered solution to address the representation of binary message structures using

XML based technology.

By using the rules expressed in this language specification vocabulary a) and b),

under the form of a XML schema, users are able to define the full collection of Data
Dictionary entities (where each Data Dictionary entity element represents an ADU
definition in a data dictionary) which will be made available to users for definition of
files/packet structures in interface specification documents. At this point we have a
collection of Data Dictionary entities under the form of an XML file. In order to al-
low definition of binary packets and files (composed by collections of ADUs), we
should first generate the library of ADUs. This library can be dynamically generated
using a provided MSG GS ADU Generator (implemented as an XML Stylesheet file),
which transforms the XML file into an ADU specification language (XML Schema
file). As can be seen in Fig. 6, the example ADU is composed by a record with differ-
ent components of type (“UNSIGNED BYTE”, “TIME_CDS_SHORT”,
“CHARACTERSTRING_SIZE” and even of “REFERENCE_TYPE” – yellow col-
oured. This last type allows re-usage of previously defined ADU as types them-
selves).

The proposed model for the implementation of the XML Framework solution re-
lies on “Schema” validation for ensuring that both the Data Dictionary types and the
built ADU definitions follow the standardized implemented structure. The use of
“Schematron”[3] validation would bring significant advantage for semantic validation
(e.g. several field constraints are currently only checked afterwards, and not at XML
document definition time – field sizes which depend on variable size definitions of
child types).

Fig. 6. ADU structure example (“GP_F1_SH1”).

4.3 Interface Specification Documents

The paragraphs that follow, describe the mechanism for definition of interface speci-
fication documents and how the ADU definition language previously generated will
be utilized.

In addition to the standardization of ADU definitions, users wanted to both stan-
dardize the contents for interface specification documents and be able to include the
previously ADU language vocabulary in each of the generated document. This task
was accomplished by defining a XML Schema language for structuring of the docu-
ments contents. Moreover, this document structure specification language takes ad-
vantage of the ADU library previously generated. This mechanism is described in the
following illustration:

DEDSL
(Data Entity Dictionary Specification Language)

MSG GS Simple & Structured
Data Types Definitions

(Extension)

MSG GS Data Entity Dictionary

MSG GS Application Data Units

MSG GS MSG GS Application Application Data Data Units GeneratorUnits Generator

<included>

ICD Document Structure

(Extension)

XSDXSD XSDXSD

XSDXSD
XSDXSD

XMLXML

XSLXSL

(a)

(d)

(b)

(e)

ICD
Facility X – Facility Y

ICD
Facility Z – Facility W

XMLXML

XMLXML

<derived> <derived>

<derived>

(g)

(c)
ICD Meta Info Definitions

(Document Object Definitions)

<included>

XSDXSD

(Extension)

<included>

(f)

(h)

Fig. 7. ICD document structure (g), which includes the dynamically generated ADU specifica-
tion (e).

4.4 Envisaged Deployment

After defining the collection of ADUs and the structure for interface specification
documents, in order to that ensure users use the same language (not customized ver-
sions), a centralized repository was designed. This repository stores the vocabulary
languages, as XML Schema files (for both the ADUs and interface specification
documents). Furthermore, when defining the contents for the interface specification
documents, users should insert references to ADUs (which are stored in this central-
ized repository). When users would like to retrieve any interface specification docu-
ment (in XML format), the repository automatically replaces the references to ADUs,
by its internal structure (used as input data for external tools).

It is also envisaged that for document updating purposes, the central repository
will also be able to provide the original document versions in XML (containing refer-
ences to ADUs), which should be re-uploaded into the central repository once up-
dated.

Given that any major change on ADUs definitions has an impact on all documents
which refer them, only administrator users should have access to the XML Frame-
work (located into the central repository) – for updating ADUs definitions for in-
stance.

5 XML Framework’s Tools

With the XML Framework deployed in a centralized manner, administrators are able
to enforce coherency of ADU definitions in interface specification documents, as well
as standardizing of its internal structure across all platforms.

But the real gain comes from developing tools which use the binary files/packets
definitions specified in each of the interface specification documents. Validation of
binary files and packets (exchanged between the different EUMETSAT system facili-
ties - and specified as collections of ADU definitions in the interface specification
document) captured under the form of files can be accomplished via a Binary File
Validation Tool, which is currently under development. This tool ingests a binary file
or packet, an ICD in XML format and the chosen identification of the file/packet
definition. The tool is then able to produce a compliance report containing the results
from the field values extracted from the binary file according to its specified struc-
ture. Another tool, could take for instance, a specification document, a user specified
binary file/packet definition and a given frequency for generation of that particular
file/packet, for determination of daily-generated network traffic and/or allocation
requirements. Besides the previously described tool, other tools will continue to pro-
vide browsable (HTML) and printable (PDF) versions of ICD documents with a for-
mat similar to existing documents in Word document format. This process is accom-
plished by making extensive use of XML Stylesheets for both transformation of
specification documents from XML format into XHTML format, or into XSL:FO
(Formatting Objects), which can be further transformed into PDF files via a “Format-
ting Objects Processor” engine such as the “Apache FOP Engine”[4].

Last but not least, a Data Format Extractor Tool is also nearly finished. This tool
automates the process of extracting ADU textual definitions from original ICD
documents and converting them into their XML representation according to the XML
Framework for further integration in ICD documents in XML format. All these com-
mand-line tools are being developed using Java for added portability and will also be
integrated and transparently made accessible via the centralized Server.

6 Conclusion and Future Work

The paper has focused on the descriptions of an engineering solution devised for
standardization of data types representation through the formalization of a specifica-
tion language, under the form of a Data Dictionary in XML format, re-usage of user-
defined data entities specifications (ADUs) inside interface specification documenta-
tion (with added validation mechanisms provided by XML Schemas) also represented
in XML format and also on tools which are able to ingest the specification language
in XML, thus turning previously reading-oriented (document) data contents into
“computable” data contents. The proposed model depends exclusively on XML
Schemas for validation of XML file structures, nevertheless this solution could be
greatly improved by using other validation mechanisms such as Schematron and/or
XCSL[5, 6] (XML Constraint Specification Language). It also important to mention
that similar work (specification of binary files using XML notation) has also been
carried out by edikt since 2003. Their work has culminated in the development of
BinX[7, 8], a library and associated editor tool for representation and manipulation of
scientific data for grid applications. Unfortunately, the fact that bit types are not sup-
ported as well as the limited portability of the solution (library is written using C++,
although porting to other languages such as Java is being envisaged), have rendered
this approach unusable (for representation of EUMETAST binary data).

Besides the development of the XML Framework, several tools have been devel-
oped: the Binary File Validation Tool, an ICD Preview Tool, Data Format Extractor
Tool and the server component which wraps all these command-line tools under a
multi-user web interface for easy access. The current work has been partially inspired
in previous and ongoing research work carried at the Uninova Research Institute[9],
namely the development of metadata storage repositories and manipulation tools[10]
for SEIS[11] (Space Environment Information Systems) and SESS[12] (Space Envi-
ronment Support System) projects.

As future work (and as previously discussed), the possible use of Schematron
and/or XCSL to improve the XML Framework should be investigated. Additionally,
it has been also anticipated that a port of the tools will take place into C/C++ for
added speed gains as well the enhancement of the XML Framework with the devel-
opment of a generic API library capable of providing reading and writing capabilities
with little integration effort with external applications.

Furthermore, we hope that it would be possible to broaden the applicability of the
XML Framework and tools to other areas of EUMETSAT. This solution is prone to
be re-used by any project on which the representation and manipulation of binary
data is an issue.

7 References

1. EUMETSAT. European Organisation for the Exploitation of Meteorologi-
cal Satellites. 2005 [cited 31/10/2005]; Available from:
http://www.eumetsat.int.

2. EUMETSAT. Eumetsat Access to Data - Product List. 2005 [cited
2005/11/06]; Available from:
http://www.eumetsat.int/idcplg?IdcService=SS_GET_PAGE&nodeId=522&
l=en.

3. Schematron - A Language for Making Assertions About Patterns Found in
XML Documents. 2006 [cited 2006.01.21]; Available from:
http://www.schematron.com/.

4. Apache. The Apache XML Graphics Project. 2005 [cited 2005/11/06];
Available from: http://xmlgraphics.apache.org/fop/.

5. José Carlos Ramalho, et al. XCSL : XML Constraint Specification Language.
2006 [cited 2006.01.21]; Available from:
http://www.di.uminho.pt/~gepl/xcsl/.

6. Ramalho, J.C. Constraining Content: Specification and Processing. in XML
Europe'2001. 2001. Berlin, Germany.

7. BinX - A Library for Representation of Scientific Data. 2006 [cited
2006.01.21]; Available from: http://www.edikt.org/binx/index.htm.

8. Rob Baxter, et al. BinX – A tool for retrieving, searching, and transforming
structured binary files. in All-Hands Meeting 2003. 2003. Nottingham.

9. UNINOVA/CA3. UNINOVA - Centre For the Development of New Tech-
nologies/Soft-Computing and Autonomous Agents. 2005 [cited
2005.11.20]; Available from: http://www.uninova.pt/ca3.

10. R. Ferreira, et al. XML Based Metadata Repository for Information Systems.
in EPIA 2005 - 12th Portuguese Conference on Artificial Intelligence. 2005.
Covilhã, Portugal.

11. Pantoquilho, M., et al. SEIS: A Decision Support System for Optimizing
Spacecraft Operations Strategies. in IEEE Aerospace Conference. 2005.
Montana, USA.

12. ESA. Space Environment Support System for Telecom/Navigation Missions.
2005 [cited 2005/11/06]; Available from:
http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=20470.

http://www.eumetsat.int/
http://www.eumetsat.int/idcplg?IdcService=SS_GET_PAGE&nodeId=522&l=en
http://www.eumetsat.int/idcplg?IdcService=SS_GET_PAGE&nodeId=522&l=en
http://www.schematron.com/
http://xmlgraphics.apache.org/fop/
http://www.di.uminho.pt/%7Egepl/xcsl/
http://www.edikt.org/binx/index.htm
http://www.uninova.pt/ca3
http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=20470

