
Structure Metrics for XML Schema

Joost Visser?

Departamento de Informática
Universidade do Minho

Braga, Portugal
Joost.Visser@di.uminho.pt

http://www.di.uminho.pt/~joost.visser

Abstract. XML schemas are software artifacts claiming an increasingly
central role in software construction projects. Schemas are used as in-
terface definitions, data models, protocol specifications, and more. Stan-
dards bodies are employing schemas for standards definition and dissem-
ination. Using code generators that accept schemas as input, software
components are generated for data interchange and persistence.

With increased reliance on schemas comes the necessity of properly em-
bedding these artifacts in the software engineering process. In particular,
schema metrics must be developed to enable quantification of schema
size, complexity, quality, and other properties, instrumental to retaining
control over the software processes in which they are involved.

In this paper, we propose a suite of metrics for the XML Schema lan-
guage that measure structural properties. The metrics are mostly adap-
tations of existing metrics for other software artifacts, such as programs
and grammars. Apart from definitions of the metrics, we report on ap-
plication of these metrics to a series of open source schemas, using our
XsdMetz tool. We suggest how the measurement results may be used to
assess potential risks in schemas.
Keywords: XML, XSD, Schemas, Software metrics, Document process-
ing, Software quality, Software risk assessment, Dependency graph, Tree
impurity, Coupling, Coherence, Component analysis.

1 Introduction

XML Schema was the first separate schema language for XML to achieve Rec-
ommendation status by the World Wide Web Consortium (W3C) [8]. It is one
of several schema languages proposed to supersede Document Type Definitions
(DTDs) for the specification of structure, content, and semantics of XML docu-
ments. The main components defined/declared in an XML Schema are elements,
attributes, simple and complex types.

XML Schemas are software artifacts that are claiming an increasingly central
role in software construction projects. Schemas have come into use as interface

? Supported by the Fundação para a Ciência e a Tecnologia, Portugal, under grant
number SFRH/BPD/11609/2002.



definitions, as data models, as protocol specifications, and more. Standards bod-
ies are employing schemas for standards definition and dissemination. Using code
generators that accept schemas as input, software components are generated for
data interchange and persistence.

With increased reliance on schemas comes the necessity of properly embed-
ding them in the software engineering process. This involves both tool support
(e.g. for schema editing, conversion, visualization) and methodology (e.g. schema
design patterns and schema style guides), areas in which progress is currently
being made at high speed.

An area in which investigation has started only recently is schema metrics.
In software engineering in general, metrics play a role in monitoring and con-
trolling the software process, or in specifying and improving software quality
aspects such as performance or reliability. To wit, the 200-page Guide to the
Software Engineering Body Of Knowledge - SWEBOK [1] contains about 500
references to the topic of metrics1. Over time, an extensive array of software en-
gineering metrics have been defined and applied [4, 3]. Metrics for XML schemas
are needed for quantification of schema size, complexity, quality, and other prop-
erties, instrumental to control the processes in which they are involved.

The first definition of a suite of metrics for the XML Schema language has
been provided by Lämmel et al. [6]. Their metrics range from simple counters
of various types of schema nodes to more involved metrics such as McCabe,
depth, and breadth. Table 1 shows an overview. All these metrics can be seen

Table 1. Overview of XML Schema metrics defined by Lämmel et al. [6].

XML-agnostic schema size

File size KB or LOC

XSD-agnostic schema size

Number of all XML nodes #NODE
Number of all XML nodes for annotation #ANN

XSD-aware counts

Number of global, local, or all element declarations #ELg,#ELl,#EL
Number of global, local, or all complex-type definitions #CTg,#CTl,#CT
Number of global, local, or all simple-type definitions #STg,#STl,#ST
Number of global, local, or all model-group definitions #MGg,#MGl,#MG
Number of global, local, or all attribute-group definitions #AGg,#AGl,#AG
Number of global, local, or all attribute declarations #ATg,#ATl,#AT
#ELg + . . . +#ATg #GLOBAL

McCabe complexity for XSD

McCabe cyclometric complexity MCC

Depth and breadth of content models

Code-oriented and instance-oriented breadth
Code-oriented and instance-oriented depth

1 With search keys like quantification, metric, measure, statistic, and their derivations.



as size metrics; the property measured by each of them is schema size, albeit
measured in many different ways. Even the McCabe metric, originally developed
with the intention to measure (program) complexity, is well-known to be strongly
and significantly correlated with size, and its use as complexity metric has been
criticised [4].

In this paper we propose a number of more advanced schema metrics that
may be used to measure other properties than size. The proposed metrics are
adaptations of existing metrics for other software artifacts, such as programs
and grammars. All metrics are defined over graph representations of schema
structure, and can hence be categorized as structure metrics. Apart from defi-
nitions of the metrics, we report on application of these metrics to a series of
open source schemas, measured using our XsdMetz tool. Also, we discuss how the
measurement results may be used to assess potential risks in schemas. Rigorous
empirical validation of the metrics as measures for external schema properties
falls outside of the scope of this paper.

In Section 2 we define graph representations of schema structure. These graph
representations are the basis of the structural metrics which we define in Sec-
tion 3. In Section 4 we comment on the implementation of the metrics suite in
our XsdMetz tool, and we discuss its application to a series of important XML
schemas. Section 5 discusses related work, while Section 6 provides concluding
remarks and a reflection on future work.

2 Graph representations of schema structure

The various components of an XML schema (such as elements, types, groups,
and attributes) can be dependent on each other in the sense that the definition or
declaration of one component may mention other components. Whenever such
a dependency exists, we say that the mentioned component is an immediate
successor of the defined/declared component. Based on this immediate successor
relation, a graph representation of the schema structure is obtained, where nodes
are components, and edges are successor relations. Figure 1 shows a small schema
and its associated successor graph (SG).

When two nodes in a directed graph can be reached one from the other and
vice versa, these nodes are called strongly connected. In the successor graph of
Figure 1, this is the case for the nodes representing the global complex type
EmployeeType and its local element Emp. A set of strongly connected nodes is
termed a strongly connected component. From any directed graph that poten-
tially contains such cycles, we may derive a directed acyclic graph (DAG) that
contains the strongly connected components as nodes, and that contains edges
between two components whenever at least one edge exists between a node in
one component and a node in the other. For our example, the derived strongly
connected components graph (CG) is shown in Figure 2. We can regard strongly
connected components as a specific notion of module for dependency graphs in
general, and by extension, for XML schemas in particular.



<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Emp" type="EmployeeType" />

<xs:complexType name="EmployeeType">

<xs:sequence>

<xs:element name="Emp" type="EmployeeType" />

</xs:sequence>

<xs:attribute name="EmployeeID" type="xs:ID" />

<xs:attribute name="FirstName" type="xs:string"/>

<xs:attribute name="LastName" type="xs:string"/>

</xs:complexType>

</xs:schema>

EmployeeType {EmployeeType}Emp

{EmployeeType}EmployeeID {EmployeeType}FirstName {EmployeeType}LastName

xs:ID xs:string

Emp

Fig. 1. A simple example schema, adapted from the online .NET Framework Devel-
oper’s Guide (http://msdn.microsoft.com/library/), for representing employee hierar-
chies. The graph depicts the corresponding successor relation. Local names such as
FirstName are qualified with their surrounding global, in this case {EmployeeType}.

EmployeeType
{EmployeeType}Emp

{EmployeeType}EmployeeID {EmployeeType}FirstName {EmployeeType}LastName

xs:ID xs:string

Emp

Fig. 2. Graph of strongly connected components derived from the successor graph of
Figure 1. The global complex type EmployeeType and its local element Emp, which are
mutually dependent, are wrapped into a single component (module).



EmployeeType
{EmployeeType}Emp

{EmployeeType}EmployeeID
{EmployeeType}FirstName
{EmployeeType}LastName

xs:ID xs:string

Emp

Fig. 3. Graph of global declarations/definitions, derived from the successor graph of
Figure 1. The various local components of EmployeeType are wrapped into a single
component together with that global type itself.

Other, perhaps more intuitive notions of module can be employed for XML
schemas. For example, namespaces, schema documents (i.e. xsd files), or global
declarations/definitions can each be employed to group nodes of a successor
graph into modules. Similar as in the case of modules as strongly-connected
components, each of theses module notions can be used to obtain a derived
dependency graph. In this paper, we will take into consideration the dependency
graph derived using the notion of modules as global declarations/definitions. An
example of such a derived graph of globals is shown in Figure 3.

These three types of dependency graphs are the basis of the structure metrics
that we define in the upcoming section.

3 Definition of metrics

We will provide definitions for a range of structure metrics. For each metric, we
will show computed values for the example schema of Figure 1.

3.1 Tree impurity

The tree impurity metric indicates to what extent a given graph deviates from
a tree structure with the same number of nodes. Fenton et al. [4] define tree
impurity for connected undirected graphs without self-edges as 2(e−n+1)

(n−1)(n−2) ·100%,
where n is the number of nodes, and e is the number of edges. A tree impurity
of 0% means that the graph is a tree and a tree impurity of 100% means that it
is a fully connected graph.

Tree impurity can also be applied to directed graphs that may contain self-
edges, simply by disregarding the direction and the self-edges. In this way, tree



impurity is applicable both to successor graphs and to strongly connected com-
ponents graphs. In particular, for the graphs of Figure 1, 2, and 3, we obtain the
values of TISG = 4.76%, TICG = 6.67%, and TIGG = 0%, respectively.

3.2 Fan-in, fan-out, and instability

A pair of classic metrics are fan-in and fan-out. The fan-in of a node in a directed
graph is the number of its incoming edges. Conversely, the fan-out is the number
of outgoing edges of the node. Both metrics are directly applicable to the nodes
of each type of dependency graph. For the graphs as a whole, the averages and
maximums of these metrics can be relevant. For the graphs of Figure 1 and 2,
we have the following values:

SG avg max
fan-in 1.125 2
fan-out 1.125 4

CG avg max
fan-in 1.0 2
fan-out 1.0 3

GG avg max
fan-in 0.75 1
fan-out 0.75 2

The maximum fan-in and fan-out, in particular, can be useful to spot unusual
nodes, which subsequently may be inspected to identify the cause of the abnor-
mality, and a possible cause of action to correct the situation.

Based on fan-in and fan-out, a measure called instability can be defined as
the fan-out fraction of total fan, i.e. as: fan-out

fan-in+fan-out · 100%. For our example
graphs, we have the following basic statistics regarding node instability:

SG avg
instability 45.8

CG avg
instability 46.4

GG avg
instability 41.7

The instability metric ranges between 0% (no outgoing edges) and 100% (only
outgoing edges). Low instability of a node indicates that it is dependent on
few other nodes, while many nodes are dependent on it. Thus, low instability
corresponds to a situation where changes to the node will affect relatively many
other nodes, and would hence be costly or difficult. In other words, instability
may be interpreted as resistance to change.

3.3 Efferent and afferent coupling, and again instability

Coupling is a notion similar to fan, but taking modules into account, where any
group of nodes may be viewed as a module. The number of edges from nodes
outside the module to nodes inside the module is called afferent coupling (Ca).
Conversely, the number of edges from nodes inside the module to nodes outside
is called efferent coupling (Ce). Their sum is simply coupling. As in the case of
fan-in and fan-out, an instability metric can be defined based on afferent and
efferent coupling, as: Ce

Ce+Ca · 100%.
For our example schema, the coupling metrics corresponding to strongly con-

nected components and to global declarations/definitions present the following
basic statistics:



CG avg max
afferent coupling 1.0 2
efferent coupling 1.0 3
internal edges 0.29 2
instability 46.43

GG avg max
afferent coupling 1.0 2
efferent coupling 1.0 3
internal edges 1.25 5
instability 43.75

Coupling is often mentioned in one breath with coherence, which we discuss next.

3.4 Coherence

Whereas coupling assesses the connections of a module with nodes external to
it, the coherence of a module concerns the degree to which its internal nodes
are connected with each other. As a general coherence metric we propose the
ratio of internal edges of a module versus all edges that start and/or end in a
node inside the module. Thus, Ch = Ci

Ci+Ca+Ce · 100%, where Ci is the number
of edges between nodes inside the module, i.e. the internal edge count. In the
limit case of singleton modules, we set Ch = 100%, rather than 0%, expressing
that singletons are fully coherent.

Note that this measure of coherence takes external edges into account, not
only internal edges. Assuming a stable node count for a module, its coherence
increases both with the addition of internal edges and with the removal of exter-
nal edges. In other words, coherence is compromised both by lack of connections
between internal nodes, and by too many connections to the outside, i.e. by
breaches of encapsulation.

As an alternative measure of coherence, one may use tree impurity, as defined
before, on the level of modules. For our example graphs, we can derive the
following basic statistics:

CG min avg max
internal edges 0 0.29 2
coherence 33.3 90.5 100
tree impurity 0 85.7 100

GG min avg max
internal edges 0 1.25 5
coherence 55.6 88.9 100
tree impurity 0 75.0 100

Both Ch and TI range between 0% and 100%, and both increase when internal
edges are added. But, whereas Ch also depends on the number of connections to
external nodes, TI of a module is independent from the external edge count.

3.5 Normalized count of modules

For each notion of module, we can define a normalized count of modules by
expressing the module count as a ratio of potential module count, which is the
number of nodes in the underlying dependency graph. Thus, NCM = #M

#N ·100%.
Thus, the more nodes get grouped into modules, the lower the normalized count
of modules. A value of 100% indicates that no grouping has occurred, i.e. each
node sits in a separate module (full fragmentation). A value approaching 0%
indicates that all nodes are grouped together in a very small number of modules
(monoliths).



Table 2. Quick reference of structure metrics.

Metric Measured per ...

TI tree impurity % ... graph (SG, CG, or GG), or
module (subgraph) of SG.

Fi fan-in N ... node (SG), or module (node
in CG or GG).

Fo fan-out N ... idem.

If instability (based on fan) % ... idem.

Ca afferent coupling N ... module (node in CG or GG),
by counting edges in SG.

Ce efferent coupling N ... idem.

Ic instability (based on coupling) % ... idem.

Ci internal edges N ... idem.

Ch coherence % ... idem.

NCM normalized count of modules % ... derived graph (CG or GG),
in relation to SG.

NM count of nodes per module N ... derived graph (CG or GG).

The interpretation of the normalized count of modules depends on the under-
lying notion of module. In case of the notion of modules as strongly connected
components, (mutual) recursion gives rise to non-singleton modules. Correspond-
ingly, NCM is a measure of recursiveness, where low NCM indicates a high de-
gree of mutual recursiveness. In the case of the notion of modules as global
definitions/declarations, local elements give rise to non-singleton modules. Cor-
respondingly, NCM is a measure of encapsulation, where low NCM indicates a
high degree of encapsulation.

For the running example, we have the following basic statistics: NCMCG =
87.5% and NCMGG = 50.0%. Note that in the case of XML Schema, mutual
recursiveness must always involve global components. Thus, increased mutual
dependencies reduce the opportunity for encapsulation, and vice versa.

Apart from comparing the total number of modules with the total number of
nodes, it may be interesting to count nodes per module (NM). For our running
example, we have the following extremes: NMmax

CG = 2 and NMmax
GG = 5.

For quick reference, Table 2 lists all metrics defined in this section together with
an indication of their scale and of the entities on which they are measured.

4 Data collection

We have implemented support for the XML Schema metrics defined in the pre-
ceding section in a prototype tool, called XsdMetz. The tool was implemented
in the functional programming language Haskell, using purely functional graph
representations and algorithms. The tool shares most of its code with other met-
rics extraction tools, in particular with the SdfMetz tool which calculates metrics



Table 3. Schemas that were sampled with the XsdMetz tool.

File name File size Provider Purpose

ABCD 2.06 141K TDWG, CODATA Access to Biological Collec-
tion Data

AWSECommerceService 91K Amazon Web service

MARC 6K Library of Congress Bibliographic data

PressureVessel 151K Codeware Inc. Data on pressure vessels and
heat exchangers

WS-ServiceGroup 4K IBM and others Web services

XMLSchema 84K W3C Schema for XML Schema

diva 86K Uppsala University Digital Scientific Archive

ebaySvc 1.9M eBay Web services

uddi v3 39K OASIS Consortium Universal Description, Dis-
covery and Integration

from SDF grammar representations [2]. Apart from generating metric reports in
several format, the XsdMetz tool exports successor graphs, strongly connected
component graphs, and global definition/declaration graphs (see Section 2) in
the dot format of GraphViz [5], which can be used to render the graphs.

We have applied XsdMetz to a series of freely available XML Schema specifi-
cations, listed in Table 3. The scope and character of this paper do not allow the
measurement data to be presented here in full. Also, these measurements con-
stitute merely a first step towards empirical validation of the metrics. Still, we
will briefly discuss some observations to illustrate potential use of the metrics.

Table 4 shows the values we measured for the normalized count of modules.
For almost all schemas, the normalized count of modules for the strong compo-
nents graph is close to 100%, indicating very low degrees of recursiveness. Only
the schema for XML Schema itself appears to contain more recursion, with a
significantly lower value of 82.2%. This conclusion about recursiveness is cor-

Table 4. Measurement values for normalized counts of modules and number of non-
singletong modules for entire graphs, and maximum number of nodes per module.

NCMCG NCMGG NMmax
CG NMmax

GG

ABCD 100 14.6 1 111
AWSE 99.6 14.0 3 236
MARC 100 55.6 1 6

Pres 99.7 9.67 5 132
WSSG 100 62.5 1 4
XMLS 82.2 52.4 38 12

diva 95.0 12.0 8 118
eBay 99.8 31.5 6 89
uddi 100 77.6 1 5



KB TI-SG TI-CG TI-GG

ABCD 141 0.19 0.19 3.9
AWSE 91 0.18 0.18 2.5
MARC 6 2.0 2.0 6.4

Pres 151 0.13 0.13 4.3
WSSG 4 1.2 1.2 1.1
XMLS 84 0.56 0.58 2.0

diva 86 0.41 0.45 14
eBay 1870 4.3e-2 4.3e-2 0.28
uddi 39 0.38 0.38 0.60

Fig. 4. Measurement values for tree impurity of entire graphs. The chart omits the
values for the eBay schema, because its relatively large file size would dwarf the others.
The TI-SG series is actually hidden by the TI-CG series, which presents extremely
similar values.

roborated by the maximum numbers of nodes per module for strong component
graphs (NMmax

CG ), also shown in Table 4. None of the schemas have more than
3 groups of mutually dependent nodes, and the schema for XML Schema has
an exceptionally large strong component, containing 38 nodes. The normalized
count of modules for the global declarations/definitions graph presents much
lower percentages, indicating a fair degree of encapsulation. The maximum num-
ber of nodes in such declarations/definitions (NMmax

GG ) indicates that the largest
module can be found in the Amazon schema, which encapsulates 236 nodes in a
single module.

Figure 4 shows the measurement values for tree impurity for each of the
dependency graphs. For the successor graph and the strongly-connected compo-
nents graph, the numbers are very similar, and very low for all sampled schemas.
The strong similarity between the tree impurity of SG and CG suggests that the
shapes of these two graphs are almost identical, which implies that recursion is
uncommon. This corroborates our observations regarding the NCMCG metric.
For all schemas, the tree impurity of the global declarations/definitions graph
is much higher, with the diva schema as uncontested outlier (TIGG = 14). The
numbers for SG suggest that schemas in general present a strongly tree-shaped
structure, with very little internal reuse. The higher values for GG with respect
to SG indicate that most schemas perform extensive encapsulations (using lo-
cal declarations/definitions), but that dependence on the same nodes is not the
criterion for grouping nodes together (otherwise, TI would go down). The de-
gree of encapsulation in the diva schema is exceptional, indicating an uncommon
specification style.

The remaining metrics (fan, coupling, coherence, instability), are not applied
on complete graphs, but per node or per module only. They are useful for catego-
rizing modules and nodes, and for finding outliers. For instance, in the Amazon
schema, values well over 200 are reached for fan-out and for efferent coupling for



both CG and GG. These extremes are traceable to a single element declaration
ItemAttributes that contains a long list of local elements, ranging from Actor to
WirelessMicrophoneFrequency.

5 Related work

5.1 XML Schema metrics

The first definition of a suite of metrics for the XML Schema language has been
provided by Lämmel et al. [6]. Their metrics range from simple counters of vari-
ous types of schema particles to basic complexity metrics such as McCabe, depth,
and breadth. The structure metrics proposed by us are not intended to compete
with, but rather to complement this suite of metrics. Since structure belongs to
the essence of XML schemas, structure metrics are likely to be valueable.

5.2 Grammar metrics

Schema metrics are similar to grammar metrics, in the sense that both schemas
and grammars can be regarded as specifying first-order algebraic datatypes, or
term algebras. The first definition of a suite of grammar metrics was provided
by Power et al. [7]. This work was adopted and extended by Alves et al. [2]
to the feature-rich grammar notation SDF. Our suite of XML Schema metrics
has partly evolved out of those SDF grammar metrics. In particular, the tree
impurity and normalized count of modules pre-existed this paper as grammar
metrics, while the fan, coupling, instability, and coherence metrics were intro-
duced here. As mentioned, the XsdMetz and SdfMetz tools share code libraries
for graph representation, transformation, and metrication, and future releases of
SdfMetz are likely to include grammar variants of most schema metrics.

5.3 Software metrics

Extensive literature exists on the subject of software metrics (for overviews,
see e.g. [4, 3]). The fan and coupling metrics are well-known in their specific
application to program modules. We gave a generic graph-based formulation
using an abstract notion of modules as groups of nodes. No standard measures of
cohesion exist, in spite of its intuitive appeal. We gave two alternative definitions
of cohesion of a module: the ratio of internal dependencies versus all dependencies
in which the module is involved (Ch), and the tree-impurity of the internal
dependency graph. A general definition of tree impurity existed before [4]. We
adapted it to directed graphs and applied it on a per-module basis.

6 Concluding remarks

6.1 Contributions

We have defined a suite of eleven structure metrics for the XML Schema lan-
guage, based on three different graph representations of schema structure: the



successor graph, and the strongly connected component graph and global dec-
laration/definition graph that can be derived from it. We have implemented the
metrics suite in a prototype tool, and applied it to freely available schemas rang-
ing up to nearly two megabyte in ascii file size. We have cursorily described the
intuitions behind the metrics and their potential use in schema assessment.

6.2 Future work

The suite of metrics presented here is not claimed to be complete in any sense.
Many more general software metrics may be investigated to be applicable to
XML Schemas.

Before the suite of metrics proposed in this paper can reliably be applied for
schema assessment, the proposed metrics must be validated. Such validation has
been explicitly kept out of the scope of the present paper. In particular, predictive
value of the metrics for external schema properties must be established. Also,
the correlations between the different metrics must be charted out.

Though we have specifically targeted XML Schemas to be measured with the
proposed structure metrics, the formulation of the metrics is sufficiently general
to attempt their application to other software artifacts. This can be other XML
schema notations, grammars, protocols, models, data type definitions, APIs,
or any artifact that allows dependency graphs to be extracted and for which
appropriate modularization notions exist. In particular, we intend to direct our
attention to formats used intermixed with XML Schema, such as SOAP, WSDL,
XSL, and further XML formats for specifying application-specific information.

References

1. A. Abran, J.W. Moore, P. Bourque, and R. Dupuis (eds.). Guide to the Software
Engineering Body of Knowledge - SWEBOK, Version 2004. IEEE Computer Society,
www.swebok.org.

2. T. Alves and J. Visser. Metrication of SDF grammars. Technical Report DI-PURe-
05.05.01, Universidade do Minho, May 2005.

3. R. Dumke. Software metrics - a subdivided bibliography. http://irb.cs.uni-
magdeburg.de/sw-eng/us/bibliography/bib main.shtml.

4. N. Fenton and S.L. Pfleeger. Software metrics: a rigorous and practical approach.
PWS Publishing Co., Boston, MA, USA, 1997. 2nd edition, revised printing.

5. E. Koutsofios. Drawing graphs with dot. Technical report, AT&T Bell Laboratories,
Murray Hill, NJ, USA, November 1996.

6. R. Lämmel, S. Kitsis, and D. Remy. Analysis of XML schema usage. In Conference
Proceedings XML 2005, November 2005.

7. J.F. Power and B.A. Malloy. A metrics suite for grammar-based software. In
Journal of Software Maintenance and Evolution, volume 16, pages 405–426. Wiley,
November 2004.

8. H.S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema part 1:
Structures. W3C Recommendation, May 2001.


