
Building reusable XML pipelines with APP

Rui Lopes and Lúıs Carriço

LaSIGE and Department of Informatics
University of Lisbon

{rlopes,lmc}@di.fc.ul.pt

Abstract. XML processing models and respective languages do not re-
flect the separation of concerns needed in complex XML applications
maintenance. As content complexity grows, there is a need for higher
abstraction levels on XML processing composition and modularization.
This article presents APP, Architecture for Pipelined Processing, focus-
ing on reusable XML pipelines as the way to achieve separation of con-
cerns in complex XML applications. With APP, execution, configuration
and development are fully-separated concerns, leveraging component and
specifications reuse.

1 Introduction

As XML [1] languages and related technologies mature, processing XML becomes
a common task, usually performed with ad-hoc solutions (such as makefiles).
However, with the introduction of complex document formats, XML processing
will be harder within a single processing step, and even, at some cases, impossible
to be done.

Consequently, there is a need for higher levels of abstraction regarding XML
document processing. XML processing models and languages solve the issue by
composing several processing tasks into processing pipelines. This is done by
specifying which content is to be processed and what result is expected, forming
full-fledged applications, where documents are generated, merged, transformed,
augmented and/or serialized.

However, the processing languages that reflect current XML processing mod-
els do not fully separate the different concerns in the definition of XML appli-
cations. There is a high-coupling between processing tasks and their respective
sources (e.g., by hardcoding filenames), as well as a mix of different process-
ing tiers across the processing specification. Therefore, with the introduction of
more complex document formats, it becomes harder to develop, configure and
maintain complex applications.

As a result, APP [2] emerges as both processing model and language, re-
flecting the separation of concerns needed for the development of complex XML
applications, without sacrificing configuration and management tasks.

This article is decomposed in the following way: on Section 2, we present the
requirements on XML processing. Next, on Section 3, related work is discussed.
On Section 4, APP’s processing model is described. Section 5 presents APP’s



processing language. Finally, on Section 6, conclusions are made and future work
is delineated.

2 Requirements on XML Processing

2.1 Separation of Concerns

Separation of concerns is a concept introduced in [3], where is it stated as “fo-
cussing one’s attention upon some aspect”. It is widely applied across different
software engineering domains, as the way to split a program into distinct fea-
tures, minimizing the overlapping between them, as described in [4]. This tech-
nique has been applied to some XML document formats, such as XHTML [5]
coupled with CSS [6] (where the first relates to document structure, and the
latter relates to its presentation).

Regarding the production of complex document formats, separation of con-
cerns should be viewed as a way to address different user tasks. Different user
profiles can be distinguished, allowing them to perform different tasks on XML
processing applications without overlapping their concerns, as follows:

– Top level users: little to no knowledge on technologies is required by top
level users; given a processing specification, they must be able to apply it to
different content sets and perform some minimal configuration (preferably
through a graphical user interface);

– Configuration managers: some technology expertise should be required by
configuration managers; their task relates to the definition of processing
specifications, through the composition of available processing tiers and/or
XML processing tasks;

– Developers: advanced technical skills on XML processing are required by
developers, as well as deep understanding of XML processing models, as
processing tasks should be componentized and highly reusable.

As separation of concerns must be reflected later into XML processing models
and languages, the following requirement set must be fulfilled:

– Processing tasks usage should be decoupled from their specification;
– Different processing tiers on should relate to different concerns;
– Any changes whithin the concerns of a specific user profile should not break

the concerns of the other profiles;
– Developers should be able to work in different processing sets, without over-

lapping.

2.2 Model

XML processing models have been characterized previously in [7], defining how
processing tasks interact with given input sets, as well as with each other. The
most relevant requirements on XML processing models are:



– The model should be extensible enough so that applications can define new
processes and make them a component in a pipeline;

– The model should allow multiple inputs and multiple outputs for a compo-
nent (as compound documents are starting to appear [8–10]);

– Information should be passed between components in a standard way, for
example, as one of the data sets conforming to an industry standard;

– The model should be neutral with respect to implementation language.

Being a critical issue in complex application development, separation of con-
cerns must be reflected into processing models. So, every requirement gathered
regarding separation of concerns must be taken into account when specifying a
processing model for complex XML applications.

2.3 Language

An XML processing model should have a compliant processing definition lan-
guage, specifying how to create XML applications compatible with the processing
model. Therefore, [7] defines the following requirements towards the definition
of an XML processing language:

– The language should be expressed in XML;
– The language should be as small and simple as possible;
– The language must allow the inputs, outputs, and other parameters of a

component to be specified;
– Given a set of components and a set of documents, the language must allow

the order of processing to be specified;
– The language must be rich enough to address practical interoperability con-

cerns;
– It should be relatively easy to implement a conformant implementation of

the language, but it should also be possible to build a sophisticated imple-
mentation that can perform parallel operations, lazy or greedy processing,
and other optimizations;

– The processing language should be declarative, not based on APIs.

Also, both separation of concerns and processing models requirements, must
be taken into account in the definition of an XML processing language.

3 Related Work

Ad-hoc solutions have been the traditional way XML processing has been de-
fined, either through makefiles, Ant scripts [11], or even through hard-coded
instructions in some programming language. As these methods require a big
effort on specification, flexible configurability and maintenance, other solutions
were proposed. Several proposals for XML processing have been made, as a way
to specify XML applications in a declarative way.



XPL [12] was created to fulfill all requirements of XML processing models
defined in [7]. This language defines an XML vocabulary describing a processing
model for XML components, specially focused on XML infosets [13]. The op-
erations are composed in a pipeline, where infosets are created, processed and
serialized. Each pipeline component describes which inputs and outputs it will
be connected to, allowing the direct manipulation of several inputs and outputs
infosets. Coupled with operations, some business logic can be applied (itera-
tions and choices), to further enable flexibility of pipeline composition. Speci-
fying parameters to each component is made by adding an input infoset with
its description. XPL is a very powerful specification, geared towards both web
application architectures, as well as complex offline XML processing. However,
as composition of pipelines is not introduced in XPL, it becomes impossible to
modularize multiple pipelines with separation of concerns without using external
composition tools.

Starting as an XML publishing framework, Cocoon [14] soon evolved to
a full-featured XML web development framework. Its concepts focus around
component-based web development. It is a flexible framework, being able to work
with multiple kinds of data sources (e.g., XML files, relational databases, and
others), delivering content in multiple formats (e.g., XML, HTML, PDF). An
application created with Cocoon is specified in a sitemap, a group of processing
pipelines. Cocoon uses the notion of pipelines as a way to compose web applica-
tions without programming. A pipeline is defined as a group of matchers, where
each matcher is responsible for the delivery of a single unit of content. A matcher
performs three consecutive tasks on a content unit: generate, transform and seri-
alize. Each matcher can depend on other matchers from the same pipeline, thus
creating a dependency-based chain of matchers, inside a single pipeline. This
dependency-based chaining approach suits well to Cocoon’s purposes (i.e., web
development tasks). However, this web orientation is single document based, as
web users only see one document at a time. This characteristic can be seen as
a limitation, when developing complex digital publishing applications, as these
tend to lean towards offline content processing and generation, where multiple
content generation and processing is a common practice. Cocoon’s dependency-
based approach is not able to handle secondary outputs, as each matcher only
specifies one output. Secondary outputs generated in a matcher are “left in
the wild”, being unable to reach them from other matchers (thus breaking the
dependency-based approach). Also, the separation of concerns achieved in Co-
coon relates to each pipeline matcher, not for content processing steps (as these
are blackboxed by matchers).

SXPipe [15] is a language for describing simple XML pipelines, towards light-
weight processing of XML information sets. It was created as a substitute for
general-purposed build tools (such as make or Ant), towards simple XML trans-
formations. The pipelines are defined by simple components which perform ac-
tions over a given input (document inclusion, validation, transformation and
serialization). Implementations of SXPipe are given an input document, process
it with the pipeline specification, resulting in an output document. As sim-



plicity is the centre of SXPipe, several issues are left behind, regarding XML
processing architectures requirements. When multiple documents are needed as
the source of a pipeline, a pre-processing step of inclusion is performed (e.g.,
XInclude [16]). This feature is acceptable in SXPipe, but not for complex XML
processing models. A better clarification of input sources is needed. Another is-
sues relates to multiple output documents. As it is left to implementations how
to handle pipeline outputs, it is implicit that each component hides its multiple
output serialization issues from SXPipe.

4 APP Processing Model

APP defines its processing model as an application specification applied to a
set of inputs, delivering a set of outputs (as seen on figure 1). An application
specification can be decomposed successively into different constructs: project,
stage, pipeline, and component.

application
specification

input
content

output
content

APP processing

APP

Fig. 1. APP processing model overview

4.1 Project

The processing model of APP defines a project as a sequence of conceptual tiers,
named stages (see figure 2). Each stage has a well known set of inputs and delivers
also a well known set of outputs. The first stage’s input is the application input,
whereas the application output corresponds to the last stage’s output. All other
stages use their predecessor’s set of outputs as the input for processing. This
division in the model is conformant to the separation of concerns requirements.

4.2 Stage

APP defines a stage as a conceptual tier of an XML processing application.
Each stage’s concern does not overlap any other stage concerns, leveraging its



input
content

Stage 1

output
content

Stage 2

...

Fig. 2. APP project

reuse in different application specifications. Consequently, a stage used in a given
application can be swapped by another stage, as long as they process the same
set of inputs and deliver the same set of outputs.

Each stage is decomposed into a set of processing pipelines, as seen on figure 3.
The stage is responsible on feeding a different subset of its input to each pipeline,
and executes their specification. The resulting outputs from each pipeline are
aggregated, thus creating the stage’s output. Each pipeline is independent from
all other pipelines, so that every pipeline output does not collide with each other,
within a stage. As long as this rule is not broken, there is no restriction on the
number of pipelines a stage can manage.

pipeline 1

pipeline 2

pipeline n

in 1

in 2

in n

...

out 1

out 2

out n

stage nstage input stage output

Fig. 3. APP stage

4.3 Pipeline

A pipeline is defined as an acyclic digraph of processing tasks (named processing
components) applied to a set of inputs, resulting on a set of outputs (see figure 4).
Inside a pipeline, each component can process a subset of the pipeline input, as
well as generate new contents. Any output from a component can be processed
by other components inside the same pipeline. Lastly, all non-processed outputs
from each component is aggregated, creating the pipeline’s output.



C1

C2

C3

C4 C5

C6

C7

pipe n
input

pipe n
output

pipeline n

Fig. 4. APP pipeline

A pipeline graph configuration enables processing of multiple inputs and
delivering multiple outputs by a single processing component, as stated on XML
processing models requirements.

4.4 Component

A processing component is defined by APP processing model as a single process-
ing task applied over a set of inputs, resulting on a set of outputs after its exe-
cution. To increase the configuration possibilities on each component, two types
of descriptors must be defined: links and parameters. Links define which set of
inputs are fed to the component, as well what outputs the component will de-
liver. Parameters must be supported as a way to allow higher configurability
of the component. Metadata can be also associated to the component and is
encouraged when the component count starts to grow, though it is not required.

All this information must be decoupled from the component implementation,
as a way to achieve high reusability (see figure 5). This can be done by using
unique identifiers (i.e., an URI [17]) over each component interface instead of its
implementation. This way, a single implementation could be used within several
components (by presenting different configuration levels, for instance).

metadata

inputs outputs

parameters
URI

component
implementation

component
interface

Fig. 5. APP component



As each component description defines which inputs are needed and which
outputs are produced, a pipeline can validate if no broken links are found between
its processing components, similarly to pre and post conditions commonly found
in “design by contract” software methodologies [18].

5 APP Processing Language

Based on APP’s processing model and the requirements of XML processing lan-
guages, APP defines its own processing language. Processing applications over
APP should be defined in this language, independently of conforming imple-
mentations. An application is defined in a project, stating which stages are go-
ing to be executed. Each stage defines its pipelines and components separately
from each other. Component interfaces are also described separately in a cen-
tral registry, simplifying the pipeline specification language. With the registry,
separation of concerns is achieved regarding the different user profiles (namely
configuration managers and developers).

5.1 Project

An APP project is specified in an XML document (as seen on listing 1.1)
based on RDF syntax [19], describing the metadata associated with the ap-
plication, in Dublin Core format [20, 21], as well as the sequence of processing
stages. These two descriptions are identified within the document with well-
known URIs in rdf:Description blocks: urn:app:project#metadata for applica-
tion metadata-related information, whereas urn:app:project#stages identifies the
stage sequence definition. By splitting stages in different files, separation of con-
cerns is further reached because each developer can centre his/her work inde-
pendently on each stage, thus stage modularization becomes an easy task.

<rdf:RDF xmlns:rdf="..." xmlns:dc="...">
<rdf:Description rdf:about="urn:app:project#metadata">

. . .
</rdf:Description >

<rdf:Description rdf:about="urn:app:project#stages">
<rdf:Seq >

<rdf:li rdf:resource="..." />
. . .

</rdf:Seq >
</rdf:Description >

</rdf:RDF >

Listing 1.1. APP project definition XML

RDF has been used as the standard way to defined metadata (side-by-side
with dc elements), enabling metadata search by top level users, whithin a GUI
tool. This way, a repository of APP applications can be browsed by top level
users, easing the selection of appropriate APP applications.



5.2 Stage

Each stage specification is defined in an XML document, with a special purpose
language, under the XML namespace [22] urn:app:stage. The document root tag
stage encapsulates all pipeline definitions for the stage (each one defined with
pipeline tags, enclosing all processing tasks to be executed on that pipeline).

<stage xmlns="urn:app:stage" xmlns:reg="urn:app:component:registry">
<pipeline >

. . .
</pipeline >
. . .

</stage>

Listing 1.2. APP stage definition XML

5.3 Pipeline

As described in APP processing model, a pipeline is an acyclic digraph of process-
ing components. To simplify the speicification of this graph, each component in-
terface description is delegated to the component registry, whereas the pipeline
description is defined just by a processing component sequence (see listing 1.3).
Each component is referenced in the pipeline by its registry identifier (reg:idref ).

The linearity of a pipeline definition eases the management of complex pipe-
lines, and, consequently, the management of complex XML applications by con-
figuration managers, satisfying separation of concerns requirements. This linear-
ity defines the pipeline’s order of processing.

<pipeline >
<component reg:idref="..." />
<component reg:idref="..." />
. . .

</pipeline >

Listing 1.3. APP pipeline definition XML

5.4 Component

A processing component usage inside the definition of a pipeline is straight-
forward. Each component is defined by the component element, referencing its
registry identifier (reg:idref ). Optionally, parameters can be passed to a compo-
nent, through the param element and its name/value attributes.

<component reg:idref="...">
<param name="..." value="..." />
. . .

</component >

Listing 1.4. APP component definition XML



5.5 Registry

To fully separate processing component interfaces, implementations, and their
usage inside a pipeline, a component registry has been defined (see listing 1.5).
This registry is RDF-based, where components are registred through rdf:li ele-
ments, under the urn:app:registry URI.

Each component entry in the registry is defined by an identifier (reg:id
attribute) that will be used in the pipelines, a processing type (reg:type at-
tribute) identifying the component type of processing (e.g., an XSLT proces-
sor [23], XInclude [16], etc.), and a resource pointer (reg:resource). Coupled
with this information, a component is defined also by its metadata (under
the URI urn:app:component#metadata), its input and output sources (URI
urn:app:component#plugs), and parameters (URI urn:app:component#params).
Each parameter usage must be identified as required or optional, through its
use attribute, having the same semantics of the use attribute defined in XML
Schema [24].

<rdf:RDF xmlns:rdf="..." xmlns:reg="..." xmlns:plug="..." xmlns:dc="...">
<rdf:Description rdf:about="urn:app:registry">

<rdf:Bag >
<rdf:li reg:id="..." reg:type="..." rdf:resource="...">

<rdf:Description rdf:about="urn:app:component#metadata">
. . .

</rdf:Description >

<rdf:Description rdf:about="urn:app:component#plugs">
<plug:in >

<rdf:Bag >
<rdf:li rdf:resource="..." />
. . .

</plug:in >
<plug:out >

<rdf:Bag >
<rdf:li rdf:resource="..." />
. . .

</rdf:Bag >
</plug:out >

</rdf:Description >

<rdf:Description rdf:about="urn:app:component#params">
<rdf:Bag >

<plug:param name="..." use="..." />
. . .

</rdf:Bag >
</rdf:Description >

</rdf:li >
. . .

</rdf:Bag >
</rdf:Description >

</rdf:RDF >

Listing 1.5. APP componet registry XML

Regarding the processing type of each component, there should be a standard
way to specify it (e.g., XSLT processing could be defined with the type app:xslt).
However, this specification is out of the scope of this paper.

Having the registry as the way component interfaces are specified leverages
separation of concerns between the different users, specially between configu-



ration managers and developers. The registry can act as a catalog for several
components, browsed by configuration managers, yet maintained and extended
by developers. Also, this separation keeps the graph nature of a pipeline away
from the configuration managers, so they can centre their skills just on what to
process, instead of how. The pipeline linearity created by configuration managers
can be validated through cycle detection in a pipeline graph composition.

6 Conclusions and Future Work

This paper presented APP (Architecture for Pipelined Processing), a novel ap-
proach on complex XML processing, centred on separation of concerns at dif-
ferent levels. As the complexity of XML applications grows, new problems arise
in the creation, configuration and maintenance dimensions, as different levels of
users can contribute to the definition of an XML application, complex documents
must be processed through complex processing tasks, etc.

Consequently, APP defined a new processing model for complex XML appli-
cations, based on specific requirements: separation of concerns (e.g., modulariza-
tion, non-overlapping of user tasks), multiple sources and results on processing
tasks, etc. Based on APP processing model, an XML processing language has
been defined, reflecting a modularized XML processing approach.

Future directions of APP are being delineated. Porting APP concepts to
graphical user interfaces will boost the acceptance of APP, on the different user
levels: top level users will not need to manipulate XML files, leveraging the
technical skills required; configuration managers can manipulate different con-
figurations easier (e.g., by using drag-and-drop features to create pipelines, easy
browsing and searching of processing components that fit their needs); develop-
ers will benefit also by having less work on registring a component interface (as
its specification may be verbose).

On the APP model and language levels, supporting iteration and choice
constructs will give more flexibility to XML applications by open the way for
automatic adaptation inside the pipelines (a choice group would select different
components based on different inputs, for instance). The dinamics inherent over
these new constructs will need a powerful selection language, such as XPath [25],
to support higher complexity on XML applications specification.

References

1. Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation (2004)
http://www.w3.org/TR/2004/REC-xml-20040204.

2. Lopes, R., Carriço, L.: APP - Architecture for Pipelined Processing. IADIS Inter-
national Conference WWW/Internet 2005 (2005)

3. Dijkstra, E.W.: On the role of scientific thought. In: Selected Writings on Com-
puting: A Personal Perspective. Springer-Verlag (1982) 60–66



4. Tarr, P., Ossher, H., Harrison, W., Stanley M. Sutton, J.: N degrees of separation:
multi-dimensional separation of concerns. In: ICSE ’99: Proceedings of the 21st
international conference on Software engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press (1999) 107–119

5. Pemberton, S., Austin, D., Axelsson, J., Çelik, T., Dominiak, D., Elenbaas, H.,
Epperson, B., Ishikawa, M., Matsui, S., McCarron, S., Navarro, A., Peruvemba, S.,
Relyea, R., Schnitzenbaumer, S., Stark, P.: XHTML 1.0 The Extensible HyperText
Markup Language (Second Edition). W3C Recommendation (2002)
http://www.w3.org/TR/xhtml1.

6. Bos, B., Çelik, T., Hickson, I., Lie, H.W.: Cascading Style Sheets, level 2 revision
1 – CSS 2.1 Specification. W3C Candidate Recommendation (2004)
http://www.w3.org/TR/CSS21.

7. Lenkov, D., Walsh, N.: XML Processing Model Requirements. W3C Working
Group Note (2002) http://www.w3.org/TR/proc-model-req.

8. Appelquist, D., Mehrvarz, T., Quint, A.: Compound Document by Reference Use
Cases and Requirements Version 1.0. W3C Working Draft (2005)
http://www.w3.org/TR/CDRReqs.

9. Newman, D., Patterson, A., Schmitz, P.: XHTML+SMIL Profile. W3C Note
(2002) http://www.w3.org/TR/XHTMLplusSMIL.

10. Masayasu, I.: An XHTML + MathML + SVG Profile. W3C Working Draft (2002)
http://www.w3.org/TR/XHTMLplusMathMLplusSVG/xhtml-math-svg.html.

11. Apache Foundation: Apache Ant (2000-2004) http://ant.apache.org.
12. Bruchez, E., Vernet, A.: XML Pipeline Language (XPL) Version 1.0 (Draft). W3C

Member Submission (2005) http://www.w3.org/Submission/xpl.
13. Cowan, J., Tobin, R.: XML Information Set (Second Edition). W3C Recommen-

dation (2004) http://www.w3.org/TR/xml-infoset.
14. Apache Foundation: Apache Cocoon (1999-2004) http://cocoon.apache.org.
15. Walsh, N.: SXPipe - Simple XML Pipelines. Working Draft (2004)

https://sxpipe.dev.java.net/nonav/specs/sxpipe.html.
16. Marsh, J., Orchard, D.: XML Inclusions (XInclude) Version 1.0. W3C Recommen-

dation (2004) http://www.w3.org/TR/xinclude.
17. Berners-Lee, T., Fielding, R., Masinter, L.: RFC2396: Uniform Resource Identifiers

(URI): Generic Syntax. Request For Comments (1998)
http://www.ietf.org/rfc/rfc2396.txt.

18. Meyer, B.: Object-Oriented Software Construction. 2nd edn. Prentice Hall (1997)
19. Beckett, D., McBride, B.: RDF/XML Syntax Specification (Revised). W3C Rec-

ommendation (2004) http://www.w3.org/TR/rdf-syntax-grammar.
20. DCMI Usage Board: DCMI Metadata Terms. DCMI Recommendation (2004)

http://dublincore.org/documents/dcmi-terms.
21. Beckett, D., Miller, E., Brickley, D.: Expressing Simple Dublin Core in RDF/XML.

DCMI Recommendation (2002) http://dublincore.org/documents/dcmes-xml.
22. Layman, A., Tobin, R., Bray, T., Hollander, D.: Namespaces in XML 1.1. W3C

Recommendation (2004) http://www.w3.org/TR/xml-names11.
23. Kay, M.: XSL Transformations (XSLT) Version 2.0. W3C Candidate Recommen-

dation (2005) http://www.w3.org/TR/xslt20.
24. Fallside, D., Walmsley, P.: XML Schema Part 0: Primer Second Edition. W3C

Recommendation (2004) http://www.w3.org/TR/xmlschema-0.
25. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,

Siméon, J.: XML Path Language (XPath) 2.0. W3C Working Draft (2005)
http://www.w3.org/TR/xpath20.


