
Automating XML Pipelines Through Rules

Rui Lopes and Lúıs Carriço

LaSIGE and Department of Informatics
University of Lisbon

{rlopes,lmc}@di.fc.ul.pt

Abstract. This paper presents XPR - XML Pipeline Rules, a novel ap-
proach on defining, maintaining, and using XML pipelines for multiple-
step document format conversion and automated detection. XPR in-
troduces a template-based approach for reusable blocks of processing
operations, as well as an abstraction for detecting document formats
based either on XPath or schema validation. With XPR, there is no
need to hand code different pipelines for each required document con-
version. Therefore, it helps developers on maintenance and extensibility
scenarios. A use case is presented, illustrating the drawbacks of current
XML pipeline technologies, and how XPR can be used complementary
to these by overcoming their limitations.

1 Introduction

XML processing with pipelines is an emerging topic in the XML scene. Pipelines
have raised the level of abstraction on defining XML-based applications, dis-
carding the complexity from using traditional API-based XML technologies in
programming languages. Thus, it has shifted away from a procedural approach
towards a purely declarative one. As such, XML pipelines are defined as a flow
of operations to be performed over XML documents (e.g., applying an XSLT
stylesheet, validating a document against a schema, etc.), according to some
given business logic. Furthermore, pipelines improve on the maintenance and
reuse of operations, as users typically tend to develop blackboxed solutions for
performing required tasks (e.g., one XSLT stylesheet vs. several stylesheets plus
something to glue them all).

Albeit being an emerging topic, different XML pipeline technologies have
been developed in the last years. Such technologies tried to solve different prob-
lems, therefore ended on having different capabilities. Cocoon [1] and XPL [2]
were defined with a flavour towards creating full-fledged XML-based web appli-
cations; MT pipeline [3] and smallx [4] shared a common goal of providing highly
efficient XML processing for large datasets; SXPipe [5], XPDL [6], or even Ant
scripts [7] provided simpler (therefore less powerful) ways for specifying XML
pipelines. XProc [8] is the W3C’s proposal on standardizing these technologies,
to cope with their different needs. Despite the differences on purposes and spec-
ification languages, all these technologies share a common concept: pipelines are
defined explicitly, i.e., a developer specifies the flow of operations to be per-
formed over a given input, delivering an expected output. If the logic behind

this process has to be changed or adapted to different circumstances, the devel-
oper has to modify the pipeline accordingly (e.g., adding support for a different
XML format at the pipeline’s input).

However, the level of abstraction introduced with XML pipeline technolo-
gies may be insufficient when scaling or maintaining pipeline-based applications.
Imagine the following scenario: a developer has to come up with a solution for
transforming different document formats into a normalized publishing format
(XSL-FO) to be further processed in consonance to a required business logic.
Moreover, this process should be fully automated, to discard the manual selec-
tion of appropriate transformations based on document formats. Furthermore,
after evaluating the problem, the developer realized that direct transformations
to XSL-FO were not available to some document formats (such as one-to-one
XSLT stylesheets). The cost of developing them is highly prohibitive, but se-
quences of off-the-shelf transformations were able to perform those tasks. Based
on these requirements and available tecnhologies for document format conver-
sion, the following graph of transformations was identified (Figure 1):

ODT

Word
ML

DB4 DB5 XH10 XH11

FO

Fig. 1. Graph of transformations

Each node in the graph represents a particular document format that must
be supported (Open Document for word processing, ODT ; Microsoft Word 2003,
WordML; DocBook v.4, DB4 ; DocBook v.5, DB5 ; XHTML 1.0 Strict, XH10 ;
XHTML 1.1, XH11 ; XSL-FO, FO), while each arc represents a transformation
from its source node to its destination node. In this scenario, any path between
a chosen node and the FO node is an XML pipeline that can be constructed
and used. However, the maintenance cost of creating this type of applications
increases as new requirements appear (e.g., supporting a new document format,
changing a document transformation operation to a more robust version, sup-
port different normalized document formats, etc.), therefore being reflected on
pipelines specifications - either by modifying existing ones, fully rewritting them,
or even creating new sets of pipelines.

Two concepts can be leveraged from these type of scenarios: identifying the
transformations that are available (and how they can be concatenated), and de-

tecting automatically XML document formats. From these high-level concepts,
any XML pipeline can be derived according to required transformation seman-
tics. This paper presents XPR - XML Pipeline Rules, a high-level language for
the specification of these two concepts, named routing graphs and sensors for
document formats, respectively. These rules are defined and transformed into
corresponding XML pipelines based on the syntax proposed by the latest XProc
Working Draft. Next, the way routing graphs are specified is presented.

2 Defining a routing graph

A routing graph describes what operations have to be used to transform any
XML input format into any XML output format. Therefore, each node of a
routing graph is, at least, a source or a destination of one processing operation.
This means that, for instance, from the scenario described previously, the routing
graph is defined by the set of arcs of Figure 1. Mapping such abstractions into a
concrete XML syntax is done through XPR templates rules, as seen on Figure 2
(a complete solution is presented in Appendix A).

<xpr:rules xmlns:xpr="http://www.rlopes.net/xml/xpr"

xmlns:p="http://www.w3.org/2006/XProc">

<xpr:template in="odt" out="xh10">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="odt-to-xh10.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="xh10" out="fo">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="xh10-to-fo.xsl"/>

</p:step>

</xpr:template>

</xpr:rules>

Fig. 2. XPR templates example

This example presents the basic language constructs usage for defining a
routing graph, through the specification of a template that converts ODT into
XHTML 1.0, and another one from XHTML 1.0 to XSL-FO. At the top level, the
xpr:rules element agreggates templates defined with xpr:template elements.
Each template defines its input and output identifiers (e.g., document formats)
with the in and out attributes, respectively.

Inside each template, an XProc-based syntax of a flow of operations has to
be defined. Each template may be a lot more sofisticated as compared to the
example, such as combining several XProc steps and constructs, calling other
pipelines, etc. This is typically done when the intermediate results from the
operations are not intended to be exposed on the routing graph. In order to
link each template when computing XProc-based pipelines, three bindings have
to be used inside the templates. These bindings are $name (the name of the
flow of operations to be referenced inside pipelines), $from (the operation upon
which the template is dependent from), and $source (the specific source to be
grabbed from the operation). The presented templates will be used as operations
on other pipelines that will be also generated: converting WordML and XHTML
1.1 to XSL-FO, both will use the conversion between XHTML 1.0 and XSL-FO
defined in the second template. Even further, if a different conversion target is
chosen for the same routing graph (i.e., replacing XSL-FO), both templates can
be used seamlessly, therefore leveraging extensibility and maintenance scenarios.

After the establishment of the desired routing graph, the abstraction layer for
the automatic detection of document formats is defined through a set of sensors,
as presented in the next section.

3 Attaching sensors

As explained earlier, an XML pipeline is typically defined to support a specific
document format as its input. Adding support for other document formats may
be implemented through XPath-based testing with choose/when/otherwise
constructs (similarly to XSLT’s). More advanced scenarios may opt for schema
validation as the way to detect document formats and trigger appropriate pipelines
to perform desired operations, through try/catch mechanisms. Both approaches
are similar in their semantics, as they perform some type of detection of docu-
ment formats. However, as they are reflected differently on XML pipeline syntax,
it poses increasing difficulties on extensibility and maintenance scenarios (i.e.,
typically results on deep trees of nested choose and try blocks). Moreover, when
a different conversion target is required to be supported, these mechanisms have
to be adapted accordingly in a manual fashion.

Consequently, XPR introduces the notion of XPR sensor rules for document
formats to allow the automation of selecting an approriate XML conversion
pipeline. Each sensor describes its semantics either through an XPath expression
or a validation schema, and links itself to a specific document format. Figure 3
presents an example for the scenario described earlier (a complete solution is
presented in Appendix A).

This example shows the syntax for describing sensors, both XPath-based
and schema-based. The XPath expression tests loosely for an XHTML 1.0 doc-
ument, while a RELAX NG schema identifies an ODT document. In addition
to xpr:template elements, the xpr:rules element also wraps xpr:sensor el-
ements, the way sensors are described. Each sensor defines its associated docu-
ment format through the format attribute. In the case of XPath-based sensors,

<xpr:rules xmlns:xpr="http://www.rlopes.net/xml/xpr"

xmlns:html="http://www.w3.org/1999/xhtml">

<xpr:sensor format="xh10" test="/html:html and not(//html:ruby)"/>

<xpr:sensor format="odt" schema-href="odf.rng" schema-type="relaxng"/>

</xpr:rules>

Fig. 3. XPR sensors example

the test attribute must be used for defining the document format identifica-
tion expression. On the other hand, when creating a schema-based sensor, the
schema-href and schema-type have to be used to identify the schema location
and its type (e.g., xmlschema, relaxng, etc.), respectively. In the case of having
more than one sensor for the same document format, sensor ordering inside the
XPR document decides which one to be applied.

After the rules for the routing graph and sensors have been described, they
must be applied in the appropriate way, as explained in the next section.

4 Applying the rules

With the routing graph described, and the sensors defined accordingly, these
rules are applied in the following way:

– A node in the routing graph is selected as the target document format;
– Each route between every node and this node is traced;
– For each route, a corresponding pipeline is created;
– The appropriate sensor is attached to each pipeline.

However, this algorithm may yeld more than one valid route between starting
and ending nodes. In such cases, the shortest path method must be applied
accordingly, as less transformations will be used (typically resulting on a better
performance). If, after this, more than one route can still be selected, template
ordering inside an XPR document dictates the decision (earlier templates will
be chosen over latter ones).

Another feature on applying XPR rules bases itself on the lifespan of sen-
sors. Their main goal is to automatically detect a document format and select
an appropriate pipeline. However, they may be used also as validation mech-
anisms between the operations defined by templates, therefore enforcing that
valid documents are fed to and produced by each processing operation.

The concrete application of XPR rules on existing or newly-created XProc-
based pipelines can be done in different scenarios, depending on its goals and
execution environment, as follows:

1. Offline rules unwinding: this type of XPR rules application is based on
transforming a set of rules into a concrete XProc library consisting on the
set of pipelines for each document format to be supported, and a pipeline
that combines the specified sensors with their corresponding pipelines. This
type of application is particularly suitable for command line or script-based
generation of pipelines;

2. Double pass pipeline execution: in this case, an XProc step for triggering
XPR is used inside XProc pipelines (like any other XProc step). However,
the execution environment preprocesses the XPR step by unwinding it into
concrete pipeline libraries (like in the previous case), and replacing the XPR
step with a call to the sensors pipeline. This case enables the direct usage of
XPR inside XProc pipelines without having to implement and/or adapt an
XPR engine to an XProc processor;

3. XProc component: syntactically, this case is used exactly in the same way as
the double pass pipeline execution case. However, by implementing a native
component for XProc, there is no need for pre-processing a pipeline doc-
ument. Therefore, pipelines can be executed directly. Another benefit from
this approach comes from performance optimization issues, as the implemen-
tation may pre-compile and cache the generated pipelines.

As said, for the second and third cases, XPR is used directly inside XProc
pipeline documents. This is done seamlessly, through the definition of the a
special purpose processing component, according to the XProc step signature
presented in Figure 4 (namespaces omitted for simplification):

<p:declare-step-type type="xpr:rules">

<p:input port="document"/>

<p:input port="rules"/>

<p:output port="result"/>

<p:parameter name="format" required="yes" />

<p:parameter name="sensors-everywhere" />

</p:declare-step-type>

Fig. 4. XProc step signature for XPR

This step declaration for XPR requires two inputs (the document to be
processed, and the rules document), produces one result document, and re-
quires two parameters, the document format that will be chosen to be delivered
by generated pipelines, and an optional sensors-everywhere flag to signal the
insertion of sensors after every routing graph nodes (increasing their lifespan
during pipeline execution).

From the scenario described earlier in this paper, a real XProc pipeline that
uses XPR according to this step signature is presented in Figure 5.

Next section discusses briefly the way an XPR processor prototype was im-
plemented.

<p:pipeline xmlns:p="http://www.w3.org/2006/XProc"

xmlns:xpr="http://www.rlopes.net/xml/xpr"

name="publisher">

<p:input port="document"/>

<p:output port="result" step="branding" source="result"/>

<p:step name="normalize" type="xpr:rules">

<p:input name="document" step="publisher" source="document"/>

<p:input name="rules" href="rules.xml"/>

<p:parameter name="format" value="fo"/>

</p:step>

<p:step name="branding" type="p:xslt">

<p:input name="document" step="normalize" source="result"/>

<p:input name="stylesheet" href="branding.xsl"/>

</p:step>

</p:pipeline>

Fig. 5. XProc pipeline example using an XPR-based step

5 Implementation details

As a proof-of-concept, an XPR processor was implemented in XSLT 2.0 in conso-
nance with the first and second scenarios described on the previous section. This
implementation transformed both sensor and routing rules into concrete XProc
pipelines, according to XPR semantics described earlier. Three main aspects can
be distinguished on implementing XPR: detecting which routes are valid accord-
ing to the selected target document format; generate the sensor pipeline; and
generate each concrete route’s pipeline.

The first step on implementing XPR in XSLT is to detect which routes are
valid, i.e., which input document formats have a route to the target document
format. Due to XSLT’s functional nature, the prototype XPR processor imple-
mented route detection through a näıve recursive breadth-first algorithm. First,
an initial route set is chosen based on all input document formats (i.e., available
templates’s in and out attributes). Afterwards, each route’s ending node is ex-
panded to all available subsequent nodes in the routing graph. This operation
is repeated for each route, until one of two conditions is verified: a loop has
been detected, or no more expansion can be performed. After all valid routes
have been found, the shortest ones are filtered for each available input document
format, therefore forming the routing set that will be used subsequently.

Based on the routing set calculated previously, the sensor pipeline can now
be created. Each sensor is transformed into specific XProc constructs, depending
on its type (XPath or schema-based). For succeding sensor tests, a corresponding

transformation pipeline is called. Each sensor failure is recusively transformed
into the next route’s sensor detection.

More concretely, XPR sensor based on XPath expressions are transformed
into choose/when/otherwise XProc constructs (see Figure 6 for an example):
when the testing for the sensor’s XPath expression succeeds, it means that a
document has been fed that matches the rules specified by the sensor, therefore
the appropriate pipeline is called; otherwise, iterate to the next sensor in the
list.

<p:choose name="generated-sensor-name">

<p:when test="sensor’s XPath expression"/>

<!-- call the corresponding pipeline -->

</p:when>

<p:otherwise>

<!-- iterate to the next sensor -->

</p:otherwise>

</p:choose>

Fig. 6. XProc skeleton for an XPR XPath-based sensor

In the case of schema-based sensors, their semantics are transformed into
try/catch XProc constructs (see Figure 7 for an example): first, try to val-
idate the input document according to the specified schema and execute the
corresponding pipeline; if something goes wrong, catch the validation error and
iterate to the next sensor in the list.

These XProc skeletons for XPR sensors further emphasize the (probable)
inherent complexity of specifying directly a sensor pipeline in XProc, as the
pipeline’s XML tree deepness grows proportionally to the number of sensors
that must be used. Once again, this issue may pose severe problems on scaling
and maintaining this type of pipelines in a manual fashion, therefore enforcing
the need for the abstraction layer provided by XPR.

The last step on transforming XPR into concrete XProc pipelines relates
to the creation of the transformation pipelines themselves. As in the previous
case, the routing set calculated initially serves as the ground basis for pipeline
construction. Therefore, each route arc is transformed into the corresponding
step defined inside XPR template rules, and all bindings ($name, $from, and
$source) are adapted accordingly.

The result from all these transformations is an XProc library consisting of a
sensor pipeline, and a set of pipelines based on the calculated routes. From the
scenarios presented in the previous section, this prototype can be used standalone
(unwinding mode) or used in conjunction with a translator of XProc-based XPR

<p:try name="generated-sensor-name">

<p:group name="generated-group-name">

<p:step name="generated-step-name" type="p:schema-type">

<p:input port="document" ... />

<p:input port="schema" href="schema-location" />

</p:step>

<!-- call the corresponding pipeline -->

</p:group>

<p:catch>

<!-- iterate to the next sensor -->

</p:catch>

</p:try>

Fig. 7. XProc skeleton for an XPR schema-based sensor

steps into concrete pipeline calls. Both cases are supported in the prototype
through simple Ant scripts, thus out-of-the-box functionality is available.

6 Concluding remarks

This paper presented XPR - XML Pipeline Rules, a solution for simplifying the
creation of XML pipelines for document format conversion based on partitioned
flows of operations, and a way to ease the automation on document format de-
tection based either on XPath expressions or full schema validation. By defining
a set of template rules and a target document format, no pipelines have to be
specified by hand, reducing human errors and maintenance costs on improving,
modifying, and extending pipeline-based document transformations. Moreover,
focusing solely on specifying rules for document format detection, developers do
not have to tinker complex document detection blocks to be able to apply the
same pipeline-based business logic to different document formats automatically.

As the XML pipeline syntax followed by XPR is XProc, some details on
XPR’s syntax and implementation may be modified in the future, side-by-side
with the evolution of XProc until reaching Technical Recommendation status.
Moreover, XPR will evolve also as a native XProc processing component to be
used out-of-the-box in XProc implementations (according to the third scenario
described on the rules application section).

Lastly, the current way XPR template rules are specified and used is based
solely on matching in and out document formats. This idea can be further ex-
tended to more complex annotations (e.g., semantic-based) upon which sofisti-
cated inference engines can select more appropriate routes and generate cor-
responding pipelines. Such annotations can be used to, for instance, identify
priorities on choosing which route is more appropriate for transforming a given

document format to the desired target document format (e.g., based on the
sofistication/accuracy of the transformations specified inside each XPR tem-
plate), or even composing several annotations as a way to describe each tem-
plate’s acceptable XML data (i.e, using logic-based operators).

References

1. Apache Foundation: Apache Cocoon (1999-2006) http://cocoon.apache.org.
2. Bruchez, E., Vernet, A.: XML Pipeline Language (XPL) Version 1.0 (Draft). W3C

Member Submission (2005) http://www.w3.org/Submission/xpl.
3. Markup Technologies: Mt pipeline (2006) http://www.markup.co.uk.
4. Milowski, A.: smallx (2006) https://smallx.dev.java.net.
5. Walsh, N.: SXPipe - Simple XML Pipelines (2004)

https://sxpipe.dev.java.net/nonav/specs/sxpipe.html.
6. Walsh, N., Maler, E.: XML Pipeline Definition Language Version 1.0. W3C Note

(2002) http://www.w3.org/TR/2002/NOTE-xml-pipeline-20020228.
7. Apache Foundation: Apache Ant (2000-2006) http://ant.apache.org.
8. Walsh, N., Milowski, A.: XProc: An XML Pipeline Language. W3C Working Draft

(2006) http://www.w3.org/TR/xproc.

A Scenario solution

For purely informative purposes, the scenario described in the paper’s introduc-
tory section is presented in its full form, as follows:

<?xml version="1.0" encoding="iso-8859-1"?>

<xpr:rules xmlns:xpr="http://www.rlopes.net/xml/xpr"

xmlns:p="http://www.w3.org/2006/XProc"

xmlns:html="http://www.w3.org/1999/xhtml"

xmlns:w="http://schemas.microsoft.com/office/word/2003/2/wordml">

<!-- sensor rules -->

<xpr:sensor format="xh10" test="/html:html and not(//html:ruby)"/>

<xpr:sensor format="xh11" test="/html:html and //html:ruby"/>

<xpr:sensor format="wordml" test="/w:wordDocument" />

<xpr:sensor format="odt" schema-href="odf.rng" schema-type="relaxng"/>

<xpr:sensor format="fo" schema-href="fo.rng" schema-type="relaxng"/>

<xpr:sensor format="db4" schema-href="docbook4.rng" schema-type="relaxng"/>

<xpr:sensor format="db5" schema-href="docbook5.rng" schema-type="relaxng"/>

<!-- template rules -->

<xpr:template in="odt" out="db4">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="odt-to-db4.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="odt" out="xh10">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="odt-to-xh10.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="wordml" out="db4">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="wordml-to-db4.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="wordml" out="xh10">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="wordml-to-xh10.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="db4" out="db5">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="db4-to-db5.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="db5" out="fo">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="db5-to-fo.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="db5" out="xh10">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="db5-to-xh10.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="xh10" out="db5">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="xh10-to-db5.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="xh10" out="fo">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="xh10-to-fo.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="xh10" out="xh11">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="xh10-to-xh11.xsl"/>

</p:step>

</xpr:template>

<xpr:template in="xh11" out="xh10">

<p:step name="{$name}" type="p:xslt">

<p:input port="document" step="{$from}" source="{$source}"/>

<p:input port="stylesheet" href="xh11-to-xh10.xsl"/>

</p:step>

</xpr:template>

</xpr:rules>

