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Abstract. XML parsing is usually done using DOM or SAX. DOM is
memory-bound while SAX provides a fairly low level of abstraction. We
propose an approach to create an object-oriented mapping of an XML
format. Based on the resulting representation, API’s for reading and
writing complete documents in a DOM-like way are provided. To handle
very large documents we propose an event-based API that returns full
elements as events and a second API to create unlimited sized documents
with memory usage proportional to the maximum tree depth.

1 Introduction

The most common models for XML interpretation and generation are DOM]3]
and SAX]2]. DOM gives you access to the whole document at once by keeping it
all in memory at the same time. This makes the memory usage grow linearly with
the document size. SAX solves this limitation by allowing the instrumentation of
parser events but is a bit cumbersome to program since the events are fine grained
requiring applications to handle them at a low level of abstraction. StAX][6] is
analogous to SAX but provides a pull-style API although it still does a very fine
grained parsing of XML. Because of this, programmers tend to end up using
DOM as long as it is feasible and switching to SAX or StAX when the datasets
become too large. This results in a complete change in the way to access the
same XML format.

The solution proposed to the problem of XML parsing relies on first cre-
ating a mapping of a XML format to an object-oriented structure. Similar
approaches have been adopted before[14,5,7]. The proposed solution is more
lightweight without any code generation or automatic conversion from DTD’s
or XML Schemas[4].

APT’s using the object mapping are provided to import and export documents
as a whole, as would be done with DOM. An event parser where events are
complete elements mapped to the same objects is provided to allow the importing
of unlimited sized documents. A way to export unlimited-sized documents is
also provided by filling it in memory much the same way as with the DOM-like



functionality but periodically pushing completed parts to disk and removing
them from memory.

With these techniques the importing and exporting APT’s use the same ob-
jects regardless of the size of the dataset, making it easier to evolve a program
to handle larger XML documents. These techniques have been implemented in
a Ruby framework released as GPL-licensed free software([1,8,10].

2 Mapping XML to Objects

To map a XML format to an object structure a simple approach has been chosen.
Each element in the format corresponds to a class and each attribute or sub-
element is reached by an accessor in the class. Attributes can be modelled as
simple get/set style methods. The sub-elements are stored in a list in the parent
element, so as to support the preservation of order. To be able to handle mixed-
content elements this list may also contain strings.

No attempt at type conversion was made, so everything is either text or an
object representing an element. This is not however a limitation of the technique
but of the implementation. We expect that existing approaches in this area[12]
would integrate easily with our work.

The implementation is fully functional. Here is an example of mapping a
simple XML format into Ruby Objects:

require ’rubygems’
require ’xmlcodec’

class SimpleFormat < XMLCodec::XMLElement
xmlformat ’Race Scores’
end

class Race < SimpleFormat
elname ’race’
xmlattr :name
xmlsubelements

end

class Car < SimpleFormat
elname ’car’
xmlattr :name
xmlattr :number
xmlsubel :result

end

class Result < SimpleFormat
elname ’result’
xmlattr :time
xmlattr :place

end



Although this might look like pseudo-code it is actually fully functional Ruby
code. The elname, xmlformat, xmlattr, xmlsubel and xmlsubelements lines
are calls to class level functions inherited from XMLElement that are executed
when the classes are interpreted and setup all of the XML import/export func-
tionality. If we wanted to create some race results with two cars we’d write:

race = Race.new

carl = Car.new

carl.name = ’Speeding Bullet’
carl.number = 17

resultl = carl.result = Result.new
resultl.time = ’1 hour 12 min’

resultl.place = 2
race << carl

car2 = Car.new

car2.name = ’0Overspeeding Bullet’
car2.number = 12

result2 = car2.result = Result.new
result2.time = ’1 hour 11 min’
result2.place = 1

race << car?2

From now on the race object will be completely filled with the race infor-
mation. To generate XML all that’s needed is to run race.xml_text, which will
generate the following document:

<?7xml version="1.0"7>
<race>
<car number="17" name="Speeding Bullet">
<result time="1 hour 12 min" place="2"/>
</car>
<car number="12" name="Overspeeding Bullet">
<result time="1 hour 11 min" place="1"/>
</car>
</race>

To import a XML document something simple like this can be done:

xmltext = ’<race></race>’
race = SimpleFormat.import_xml_text(xmltext)

The race object will link to the full representation of the XML tree. The
framework includes a little more functionality than was explained here including
importing/exporting from a DOM object model instead of XML text. See the
framework website and the API docs for more information[10,11].



3 Event Parsing Using Objects

In the previous section we explained how the mapping between XML and objects
has been solved. Now we take those same objects and use them together with
a standard XML stream parser to produce an event-based XML parser where
each event returns a complete object.

The parser is implemented by keeping the current XML element as well as
all its ancestors in a stack. The top of the stack will always contain the element
currently being parsed. Whenever a new XML element starts a new object is
created in the stack and it is connected to its parent so that the XML tree is
recreated in memory. Any text content is also added.

Every time a XML element closes we have a complete representation of it
in memory and can thus generate an event ourselves to any listener, informing
that a full element has been parsed and passing it along to be used.

If nothing else is done the event that closes the root element of the XML
document returns an object that indirectly links the whole tree. Although this
might be useful for some purposes it would impose a memory limit on the size of
the document that could be parsed. To solve this a listener can choose to consume
the element during the processing of the event. In this case what happens is that
the element is removed from the tree and will not appear as one of the children
of its parent when the event for that element comes.

This technique will allow the parsing of an unlimited sized document with
memory usage proportional to the maximum depth of the XML tree. If the tree
has unbounded depth the memory usage will not be bounded and we won’t be
able to parse unlimited sized documents. In the real-world big XML documents
tend to be very wide instead of deep.

If you do find such a difficult case of an XML document that is huge by being
deeply nested even a simple stream parser will consume unbounded amounts
of memory and a totally different parsing technique needs to be employed or
perhaps discovered.

4 Generating Unlimited-Sized Documents with Objects

Now that we’ve seen how it is possible to parse a document of unlimited size
with low memory usage we need a way to generate such a document. There is no
usual equivalent to the stream parser for document generation. Software tends
to use DOM when feasible and its own exporter when necessary.

The XML to object mapping we’ve described can be used the same way as
DOM is usually used with the benefit of a better API. To do this we first create
the whole XML tree in memory, represented by objects, and then write it to disk
in one go.

To be able to use the same API and not keep the whole document in memory
while we create it we’d have to implement a fairly complicated virtual memory
system so that we could transfer elements back and forth from disk. To make
this much simpler all we have to do is impose the restriction that the tree is



filled depth-first and left-to-right. This is the order used in the XML document
itself.

If the in memory tree is filled in the same order as the elements appear in
the XML text we can continuously write elements to disk and remove them from
memory. To do this we use the API as usual but call for the partial export of an
element when we are done with it.

What the partial export does is append the text of the element to the XML
file and then remove the element from its parent. To be able to do this though we
must first at least write the opening tags of the parent elements. This is handled
by separating the partial export process into two steps. The first step writes the
opening tag for the element with any attributes followed by any sub-elements
that have been added to the parent. The second step writes the close tag for the
element and removes it from the parent. Between these two steps more elements
can be added to the element and exported to disk.

We don’t have to fill the tree in the exact same order as the XML text is
written. The actual restriction is that after we call to export a certain element
we must not change or add any element that would be before it in the XML text
since that point in the file has already passed.

Once again this allows the creation of unlimited sized documents with mem-
ory usage proportional to the depth of the tree

5 Practical Application

This framework and techniques have been created to solve the problem of creat-
ing and interpreting large EAD[13] XML files. Both scalable import and export
techniques were used to produce and consume EAD files with sizes of over 100
megabytes.

Because the framework has been extracted from the concrete solution the
separation between the two proved very clean. Import/export techniques were
first implemented for the EAD case and later made generic. The result is that in
the end the EAD library became just a set of class definitions for the format’s
elements, like the simple example given to illustrate the XML to object mapping.
This library has also been released as free software[9].

This application shows that an import/export library can be defined for a
specific XML format without hand-coding a lot of infrastructure and still get a
scalable library, capable of handling size-unlimited XML files with no size limits.

The library has been developed to handle the EAD creation and parsing needs
at Instituto dos Arquivos Nacionais/Torre do Tombo (IANTT). The production
archive system uses a proprietary import/export format. The two main goals for
EAD use where to export and convert the full set of existing descriptions into
the format and then make them available in a Web application with full search
capabilities.

We’ll now see how the import and export API’s can be used in a real use
scenario to import and export large quantities of EAD. No deep knowledge of the
EAD format is required to understand these examples. It suffices for this purpose
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to understand that EAD is an XML format to describe a tree of records. Each
record is an archdesc XML element if it’s the root orc element otherwise. The
tree is described in XML by nesting the c elements.

5.1 Generating Large Quantities of EAD XML Files

The archive system at IANTT has an underlying data model based entirely on
text fields. Each record is just a set of strings for the fields. Connections between
fields are done by brute-force or indexed search over these fields. The record tree
is inferred from the reference codes rather than being kept by linking records to
each other.

Exporting the contents of the archive system results in a single file containing
all the records in sequence. This file has been indexed so that it could be traversed
in the lexicographic order of the reference codes for each record. This is the same
as visiting the tree of records in pre-order because reference codes are defined
much like Unix paths. For example PT-TT-TS0/IC is the immediate child of
PT-TT-TSO.

Using the index of the records the method described in Section 4 was used.
For each of the roots of the description tree a single EAD file containing the
corresponding tree has been created as follows:

@curdepth = -1
Q@index.each_with_depth do |obj, depthl]|
if depth ==
change_file(obj)
else
newel = EADCodec::Level.new

if depth > @curdepth
@curelements.push(newel)
else # depth <= curdepth
(@curdepth - depth + 1).times do
@curelements [-1].end_partial_export (@file)
@curelements.pop
end
@curelements [-1] << newel
@Qcurelements.push(newel)
end
end
@curdepth = depth

fill_element (@curelements [-1], obj)
end

Line 2 shows an iteration over every single record. This iteration receives for
each element an object encapsulating the text fields of the record and the tree
depth we are currently in. The depth is calculated using the reference code. For
each record a new object is created representing the EAD element (line 6).
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All the ancestors of the element currently being processed are kept in a stack.
To maintain this stack we first find out if the depth of the tree has increased (line
7). If so the new element is pushed into the stack. If not the stack is popped to
the depth immediately above the one we’re currently at and each of the elements
is finished and written to disk (lines 10 through 13). The current element is then
added to the EAD tree (line 14) and pushed into the stack (line 15).

At the end of each iteration the depth is saved to be used on the next (line
18). Finally the EAD XML element is filled with the contents from the record
(line 20). This implements the mapping between the archive system’s set of fields
and the EAD format. fill _element is a rather large method so it will not be
listed here. It’s operation is however quite simple. The partial export API (as
all the APT’s described) uses the same objects as the more traditional APIT’s so
the method fills the object in much the same way as was done in Section 2.

The tree depth is zero when we’re in one of the roots so we change the file
that’s currently being written (lines 3 and 4). change_file is defined as:

def change_file(obj)
@ead.end_partial_export (@file) if Q@ead

@file = File.new(obj.RefNo+’.xml’, ’w’)
Qead = EADCodec::Document.new(obj.RefNo, ’...7)
@curelements = [@ead.archdesc]

end

change_file starts by finishing the export of the previous file by calling for
the end of the export on the root element (line 2). The framework takes care of
recursing down the XML tree and finishing all of its still open elements. After
that a new file is created in the filesystem (line 3) and a new EAD document
object is created (line 4). The element stack is initialised with a single element,
the root of the element tree which is the archdesc element (line 5). At this point
we could do a call to the partial export methods to export the beginning of the
EAD file. This is actually unnecessary since it will be taken care of automatically
by the framework the first time an element is exported (line 11 of the previous
code listing).

The export from the archive system is about 800 megabytes. After conversion
to EAD through the process just described a few hundred files are created with
a total size of around 300 megabytes. The process takes approximately 2 hours
on a modest computer (3.0Ghz Celeron processor with 1 GiB of memory), most
of which is spent indexing the exported file and not doing the conversion itself.

The conversion process takes time proportional to the number of records in
time and constant space. The indexing process makes the full conversion process
have memory usage linearly proportional to the number of records because it
needs to create an index of all of them, sorted by reference code. Time is of
NlogN order because of the sorting step. This turned out not to be a problem.
The index is small; all it stores is the records’ codes along with their offset within
the file so that their contents can be retrieved.
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Most of the complexity of this process lies in recreating the tree from the flat
set of records the archive system provides us with. Besides the £i1l _element
method there’s just three lines of code that deal with the EAD exporting (line
11 in the export loop and lines 2 and 4 in change file). fill element itself
doesn’t do any calls to the partial export process and could be used without
modification with the more classic export API’s. The partial export API is thus
very simple to use although it does require care in setting up the correct looping
procedure to serially generate the XML tree.

5.2 Parsing and Importing Large Quantities of EAD XML Files

After generating these EAD files a Web application has been created to index and
search them. We’ll now see how large EAD files can be parsed and processed
using the event parser described in Section 3. The code to implement this is
extremely simple:

files.each do [filel
1 = MyEADStreamListener.new
el = EADElement
parser = XMLStreamObjectParser.new(el, 1)
parser.parse(File.new(file))
end

class MyEADStreamListener
def el_c(el)
handle_object (el)
end

def el_archdesc(el)
handle_object (el)

end

def handle_object (o)

# ... Do something with thts description ... #
o.consume
end

end

The main loop (lines 1 through 5) is very simple. For each of the files it
creates a listener object (line 2), then a stream parser with the listener and the
root element for the EAD format (line 4). Finally the parser is told to parse the
file by passing it a file object (line 5).

The stream parser will parse each of the XML files and for each element
within them call the listener. The API works almost the same way as a SAX
parser. The difference is that the events are full elements instead of the opening
and closing of tags. The listener will contain one or several methods named



el_tagname. For each of the elements found in the XML file the parser will call
the corresponding method in the listener if it exists.

Lines 8 through 21 show an example of a listener for the EAD format. There
are methods to listen to ¢ and archdesc elements that both call handle_object
to do the actual processing since these elements are similar. handle_object will
do something with the object and then consume it (line 19) removing it from
the XML tree and allowing the memory for it to be freed.

In the Web application handle_object adds a record to a database con-
taining the contents of the description as well as adding it to a textual index
for searching. Full imports of large EAD files have been successfully completed.
Memory usage is constant and running time is proportional to the number of
records in the EAD file.

The final version of the application ended up not using this parser. Because
of unrelated architectural decisions it sufficed to use a simpler parser of the
same type that instead of returning elements as Ruby objects containing the
parsed XML content just returned the XML text itself. This could be achieved
by doing o.xml_text inside handle_object. It is however much more efficient
to not create the objects to represent the XML structure.

6 Comparison with Other Approaches

We will now compare the existing technologies to the proposed solution. Table 1
shows six different technologies and a set of comparison points. The first two
columns indicate whether the API’s are capable of both parsing and generating
XML. All but SAX do both. The Generating equivalent of SAX is usually to
output XML manually by writing the file directly. StAX has a much friendlier
way to do essentially the same thing while DOM does it by using the same
in-memory structure it creates when parsing to generate XML.

l Name ‘Parse‘Genemte‘Mappmg‘ Validating‘APl Type‘Space Used‘

XMLCodec | Yes | Yes Yes No Push |O(Depth)
JAXB Yes | Yes Yes Yes Push O(Size)

XML Beans| Yes | Yes Yes Yes Push O(Size)
StAX Yes | Yes No No Push 0o(1)
DOM Yes | Yes No No Push O(Size)
SAX Yes No No No Pull 0(1)

Table 1. Feature Matrix of the Various Approaches

JAXB, XML Beans and XMLCodec are all capable of performing the map-
ping between XML and objects. In this respect our proposal has the most modest
feature set. JAXB and XML Beans support full type systems and richer API’s.
Somewhat as a result of this they also support validating the XML while our
solution does not.



StAX, unlike all others, has a push-style API. This means that the control of
the advance of the XML parsing process is done by the caller and not the API.

As for the space usage or complexity, JAXB, XML Beans and DOM all use
space proportional to the XML document size, since they load it all into memory
at once. As we’ve shown our approach has space complexity proportional to the
document’s depth. StAX and SAX use constant space since they don’t need to
keep the state of the XML tree around. This is not usually an actual advantage
because most of the applications that use these API's will almost surely have to
add a layer above them that will at least keep track of all the elements in the
current depth expansion of the XML tree and will thus use space proportional
to it’s depth.

Our solution equals or improves the common ones over most of the criteria
with which XML processing API’s are usually compared. It is behind in some
areas not because of inherent problems with the approach but because the cur-
rent implementation is still not full-featured. The only area where the approach
has an actual inherent limitation is in space efficiency. As we’ve seen this is only
important in a very small number of cases where SAX or StAX low-level parsers
will have to be used. When compared to its most natural competitors like JAXB
or XML Beans its space efficiency is a clear improvement.

7 Further Work

The XML mapping to objects and the import/export API’s were built out of
necessity to solve a particular problem set. The implementation turned out stable
and functional enough to suggest several avenues of further work.

7.1 Performance Work

All of the work on performance improvement centred around optimising for space
and not time. The technique itself is not algorithmically complex but the current
implementation is somewhat naive and unoptimised. There has been some work
done in caching some frequent operations and some simple code optimisations.
Profiling and optimisation work could probably speed it up a fair amount.

7.2 Validation

The XML mapping has no support for the implementation of validation of XML
elements. It would be simple to add support for checks performed when importing
and exporting elements.

7.3 Pull-Style API

StAX is different from all other common XML API’s in that it gives control over
the advance of the parsing process to the caller. This is orthogonal to the parsing



technique described. Our implementation uses a SAX parser but the technique
can be just as easily implemented using StAX.

The API for the pull parser would reverse the calling process. Instead of the
caller providing a listener to respond to parser events it would call the parser
repeatedly to process the XML. Each call would return an object representing a
XML element instead of a XML instruction, tag or text. This new parser would
be to StAX what our parser is to SAX.

7.4 Auto-Generation from Schemas or DTDs

Writing a XML mapping requires writing a class for each of the elements in
the format. It would be feasible to automatically create these classes from a
XML schema or DTD. It would then be possible to create the validation rules
automatically. This would be similar to what XMLBeans and JAXB do [5,7].

7.5 Generic XML Import/Export

Although the framework has been generalized to work with any XML format
it still requires classes to be defined for each element type, instantiating the
framework as an import/export library for a specific format. This isn’t strictly
required for the mapping techniques to work. It would be possible, and relatively
easy, to create a generic element type that is instantiated with the element
name and to which attributes and elements are added. The import and export
techniques could still work with it.

Supporting generic XML import/export would turn the framework into a
DOM-style API with the possibility of using the techniques described for han-
dling large documents.

7.6 Virtual-Memory Style Import and Export

As briefly pointed out when describing the framework, the partial export method
avoids having to implement a full VM-style abstraction by limiting the filling
of the in memory structure to the XML text order and by removing elements
from memory after they’ve been exported to disk. Importing a large document is
handled by a stream parser whose events are complete elements. This is useful in
a large number of situations but might require several passes through a document
for some workloads.

A unified solution to the limitations imposed by these methods would be to
treat the XML document as the on-disk representation of the in memory struc-
ture and implement the VM-style abstraction that would make that distinction
transparent to the API.

This is feasible if not trivial but much care would be needed with the space-
time trade-off of such an implementation. The techniques presented were de-
signed explicitly to be both space and time efficient by limiting the XML pro-
cessing to use the text order. Random access requires navigating back and forth
in the structure.



If we keep a full skeleton structure in memory, random access will be fast and
memory-hungry since it will only hit the disk to fetch content. Another choice
is to only keep in memory whatever element pointers the user has. This will be
memory-lean but slow because it must hit disk for every navigation within the
tree. A compromise between the two can probably be made by going with the
second option but introducing a dynamically sized cache that can be configured
to a desired size.

8 Conclusion

The techniques explained aren’t just proposals, a fully-functional implementa-
tion exists and they’ve been tested in production environments with large doc-
uments. It has been shown that mapping XML to objects can be simple yet
API-rich. The techniques for importing and exporting large XML documents
have proved useful and shown adequate performance. Further work along these
lines could completely break the current separation between DOM and SAX
techniques and how they are used.

Although the techniques described are independent of the programming lan-
guage the current implementation and the way that the XML mapping works
would not be possible without the expressiveness of Ruby. All of what’s described
here has been implemented in less than a thousand lines of code and has been
fully unit tested in less than 800 lines. It has also been a joy to write.
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