
SPARQL Back-end for Contextual Logic Agents

Cláudio Fernandes and Salvador Abreu

Universidade de Évora

Abstract. XPTO is a contextual logic system that can represent and
query OWL ontologies from a contextual logic programming point of
view. This paper presents a prototype of a SPARQL component for that
system which is capable of mapping Prolog/CX to SPARQL queries.

1 Introduction

We present a back-end that aims to transparently merge the reasoning of the
XPTO 1 [FLA07] [LFA07] internal knowledge base with external OWL [BvHH+05]
ontologies, more exactly its Lite and DL sub languages, available from third par-
ties, by means of the SPARQL [PS06] query language. To achieve this, we devel-
oped a system that provides functions for communicating with Web SPARQL
agents for ontology querying purposes. It provides the system with the ability to
pass a SPARQL query to an arbitrary SPARQL Web agent and get the solution,
encapsulating the results as bindings for logic variables.

The presented back-end grants XPTO with capabilities for writing Pro-
log/CX [AD03] programs to reason simultaneously over local and external Web
ontologies.

2 Mapping Prolog to SPARQL Queries

Although it can be viewed as a single independent component, the back-end
purpose is to allow the XPTO-using programmer to query external and internal
ontologies using the same query syntax and declarative context mechanics as
the XPTO internal system. This will allow to transparently query internal and
external ontologies and merge their results in the same program.

To achieve this level of functionality, we developed a Prolog/CX to SPARQL
engine that satisfies the following requirements:

– Translate a partially bound Prolog/CX goal into SPARQL;
– Send the SPARQL query to the specified Semantic Web SPARQL service;
– Fetch the XML result file, parse it and return the solutions as Prolog variable

bindings using the Prolog/CX backtrack mechanism to iterate over sets of
answers;

A SPARQL query in the back-end environment is a Prolog/CX context exe-
cution. Figure 1 illustrates a definition of a back-end query.
1 XPTO is a recursive acronym that stands for XPTO Prolog Translation for Ontolo-

gies.



QUERY := sparql(URI) /> P1 ... Pn :> ITEM

URI := URL

P := property(VALUE) or where(PROP, VALUE)

ITEM := item(INDIVIDUAL)

Fig. 1. Back-End Query Definition

On the left side of the defined operator ’/>’ is specified the external agent
and on the right side are the goals and query restrictions. The right side of the
operator encodes the query that must be mapped to SPARQL. We translate that
information into RDF triples, much in the same way a database is translated
into triples, i.e, for each of the n stated properties about an individual, the back-
end must translate it to (n-1) triples. The triples are extracted by the union of
each property term of the right side and the item term, which represents the
subject of the triple.

3 Examples and Query solutions

We now present an example. We will use the XAK - XML Army knife [Dod06]
SPARQL service which implements the SPARQL Protocol for RDF and provides
a SPARQL query engine for RDF data available on the Internet.

The Wine OWL DL ontology 2 is a sample ontology used in the OWL speci-
fication documents and will serve as the use case ontology in this paper. Among
others, the IceWine class present in the ontology defines two properties: hasBody
and hasColor.

Figure 2 shows an example of a back-end query that asks XAK to search the
Wine ontology for all the individuals that have both of these properties.

1 ?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />

2 hasBody(A) :> hasColor(B) :> item(IND).

Fig. 2. Back-end Prolog/CX query to XAK

The Prolog/CX query in Figure 2 has no ground Prolog atoms besides the
url that identifies XAK. It includes two specified properties, thus originating two
RDF triples, one for each property. Figure 3 shows the correspondent SPARQL
generated code.

2 The ontology is accessible in http://www.w3.org/TR/owl-guide/wine.rdf



1 SELECT ?id ?hasColor ?hasBody

2 WHERE {

3 ?id :hasColor ?hasColor.

4 ?id :hasBody ?hasBody.

5 }

Fig. 3. Generated SPARQL for the query in Figure 2

After the SPARQL generation, the code is sent to XAK. In order to success-
fully communicate with it, the back-end must first encode the query as specified
in the SPARQL Protocol for RDF [Cla06] and establish the values of a few pa-
rameters like the default graph to be queried. (Figure 4 shows the generated
string that is sent over to XAK ).

1 GET http://xmlarmyknife.org/api/rdf/sparql/query?default-graph-uri

2 =http://www.w3.org/2001/sw/WebOnt/guide-src/wine.owl&query=

3 PREFIX+:+<http://www.w3.org/2001/sw/WebOnt/guide-src/wine%23>

4 +select+?id+?hasColor+?hasBody+where+{?id+:hasColor+?hasColor+.+

5 ?id+:hasBody+?hasBody}

Fig. 4. Back-end encoded query example

If a successful query response code is returned, a file with the solutions is
received. This file is in the SPARQL Query Results XML Format [BB06] and
includes one solution. This XML file is then parsed and the solution values are re-
turned as bindings for Prolog variables as illustrated by the last lines in Figure 5.

1 ?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />

2 hasBody(A) :> hasColor(B) :> item(IND).

3

4 A =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine#Medium’

5 B =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine#White’

6 IND =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine#SelaksIceWine’ ? ;

7 (4 ms) no

Fig. 5. Prolog/CX query to XAK and the returned solution



The solution presents only one individual, SelaksIceWine, and the values
Medium and White for properties hasBody and hasColor respectively. This
means the whole ontology only has one individual that has those two properties
defined.

4 Initial Assessment and Conclusions

The component presented in this paper is still work in progress. With the current
capabilities, one can use the expressiveness of Logic Programming to perform
basic queries to an ontology via a third party SPARQL Web Service. These ca-
pabilities can then be combined with other Prolog/CX data access forms for
reasoning over different data repositories. For example, an application can indif-
ferently use local data provided by the XPTO engine, external data through the
SPARQL back-end and data residing in a relational data base accessed using
ISCO [AN06].

Although no proper benchmarks were defined yet, the experimental work re-
vealed no particular performance issues on the back-end side, which means that
practically only the XAK connection will introduce some latencies. Note, how-
ever, that the generation of SPARQL is currently done in a per-query basis. One
important feature to be implemented as future work is to allow the generation
of SPARQL code for a composite (e.g. conjunction) of Prolog/CX queries.

References

[AD03] Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In
Catuscia Palamidessi, editor, Logic Programming, 19th International Con-
ference, ICLP 2003, Mumbai, India, December 9-13, 2003, Proceedings, vol-
ume 2916 of Lecture Notes in Computer Science, pages 128–147. Springer-
Verlag, 2003. ISBN 3-540-20642-6.

[AN06] Salvador Abreu and Vı́tor Nogueira. Using a Logic Programming Language
with Persistence and Contexts. In Masanobu Umeda and Armin Wolf, ed-
itors, Declarative Programming for Knowledge Management, volume 4369
of LNCS, Fukuoka, Japan, 2006. Springer.

[BB06] Dave Beckett and Jeen Broekstra. SPARQL Query Results XML Format.
Candidate recommendation, World Wide Web Consortium, 25 December
2006. http://www.w3.org/TR/rdf-sparql-XMLres/.

[BvHH+05] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
Owl web ontology language reference. Recommendation, World Wide Web
Consortium, 19 October 2005. http://www.w3.org/TR/2004/REC-owl-
ref-20040210/.

[Cla06] Kendall Grant Clark. SPARQL Protocol For RDF. Candidate
recommendation, World Wide Web Consortium, 6 October 2006.
http://www.w3.org/TR/rdf-sparql-protocol/.

[Dod06] Leigh Dodds. XML Army Knife. http://xmlarmyknife.org/api/rdf/sparql/query,
5 December 2006.



[FLA07] Cláudio Fernandes, Nuno Lopes, and Salvador Abreu. On querying ontolo-
gies with contextual logic programming. In Christine Golbreich, Aditya
Kalyanpur, and Bijan Parsia, editors, OWL: Experiences and Directions
2007, volume 258 of CEUR Workshop Proceedings ISSN 1613-0073, June
2007.

[LFA07] Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Contextual logic
programming for ontology representation and querying. In Axel Polleres,
David Pearce, Stijn Heymans, and Edna Ruckhaus, editors, 2nd Interna-
tional Workshop on Applications of Logic Programming to the Web, Se-
mantic Web and Semantic Web Services, September 2007.

[PS06] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. Candidate recommendation, World Wide Web Consortium, 25 July
2006. http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/.


