RADX - Rapid development of web applicationsin
XML

José Paulo Leal and Jorge Braz Gongalves

DCC-FC, University of Porto
R. Campo Alegre, 823 — 4150 — 180 Porto, Portugal
zp@dcc.fc.up.pt, jgoncalves@ipg.pt

Abstract. This article presents an on-going project whosal ge the fast

development of web applications based on the RAD eho@lhe system

resulting from this project - RADX - generates waplications for XML data

management. RADX consists of two main componentsagpiication engine
to run web applications based on XML documents thit configured using

XSLT transformations; a meta-application for getiagp and managing
applications that run with the application engifike main feature of the meta-
application is the ability to generate XSLT configtions from 2nd order
transformations, applied to data document typendefns in XML Schema.

These configurations can be changed, allowing ouigetion of the

application. RADX intends to be a system rapid degelent of small web

application and prototypes of larger systems.

Keywords: XML, RAD, web applications, framework, prototyping.

1 Motivation

The goal of this project is the implementation ofsystem for rapid and easy
development of web applications based on XML [l]cutoents. These data
management applications, with a simple and inteitnterface, are intended for small
data sets and/or applications prototypes. XMLnireasingly used to transfer and
archive data since it enables the interoperabbiggween different platforms and
facilitates its future use.

By using XML for data representation, RADX enablése use of XML
technologies in all web application layers, avoidihe need for successive format
conversions. Web applications are usually compadethree layers, each with its
own data model: the presentation layer based on HGMXHTML trees, the logical
layer based on object graphs, and the data laysedban tables of a relational
databases management system. The use of diffesemafs in each layer requires
several data conversions that have a significastt co

As RADX uses XML both in the data layer and thespraation layer, we decided to
explore the use of XML also in the logic layer @siXSLT [2] transformations on
XML documents.

2 Anexample

This section describes, through an example, theeldpment and use of a web
application with RADX. This system has two main qmments: theApplication
Manager and theApplication Engine. The former is a meta-application that allows the
creation, management, and elimination of applicetitat run in the latter.

N\ 1 7.

home | features | documentation | contacts

RADX Rapid Development of Web Applications in XML

New Application

Name

Model C._DITIDEICt___\’ MNew

My Application's

l"AI:lEIrESE. Book d\“

Books Manage
Book of recipes Execute
| Company vehicles o Delete

Fig. 1. A screen shot of the Application Manager

The initial screen of the Application Manager i®wh on Fig. 1. One of its main
features is the ability to generate an applicafiom a XML Schema [3] document.
This document describes the structure of the apipbin’'s data. Usually, this
document will be produced in an IDE with specifipport for this standard, such as
XML Spy, Oxygen or Eclipse.

The upper part of the Application Manager’s inigakeen is a form for generating
a new application. It requires entering the appilices name, the location of the
XML Schema document and choosing a model for th@i@dion’s GUI. As part of

the creation of a new application, several secomlbroXSLT transformations are
executed, producing documents of various typessé& liecuments will be needed by
the Application Engine to run this application.

Generated applications are listed on the form enlalver part of the screen (Fig.
1). The selected application can be managed, ee@aut eliminated. The manage
button gives access to a form for editing individdacuments generated for an
application. The delete button eliminates the ajailbn from the system. The execute
button launches the selected application on thdiégton Engine.

Let us assume we want to generate an applicatiomattage a collection of music
CDs. Using a specialized XML Schema editor we halveady produced a document
type similar to the presented in Fig. 2:

— <schema targetNamespace="http:'/www example org/cds" elementFormDefault="qualified">
— <element name="cds">
— <complexTvpe>
— <sequence>
— <element name="cd" maxQOccurs="unbounded" minOccurs="0">
— <complexType>
— <segquence>
<element name="title"/>
<element name="mterpreter'/>
<element name="vear"/>
</sequence>
</complexTvpe>
</element>
</sequence>
</complexTyvpe>
</element>
</schema>

Fig. 2. An XML Schema for a CD management application

Using the Application Manager we create a new apfbn namedds with the
file containing the document on Fig. 2 and the caab@GUI model. In the resulting
application the user will have access to a rangeptibns: search CDs, create a new
CD entry, edit or delete existing CDs and navigedagh them.

RADX

Rapid

Application

Development 7 da

Application Cds

Title |Sleep Through The Static
Interprater Jack Johnson

1 :
E” Search "Newl[Save][Delete]

Fig. 3. Application Engine screen shot

The GUI shown on Fig. 3. depends both on the datatsre, given by the XML
Schema document, and on the selected GUI model.ciitrently available options
are the compact model, used in the example, andxpanded model. The compact
model is based on a single form used for all opmwat create, modify, search,
display, navigate and remove elements. The expanuedel has other views for
some operations. For instance, the result of ackegperation is a list containing the
selected elements. Other GUI models are plannedfifture versions of the
Application Manager.

3 Reéated work

James Martin presented, in 1991, a model of soéwdavelopment known as RAD
(Rapid Application Development) with the publicatiof a book [4] with the same
name. This model aims to shorten the software deweént cycle, producing faster
results and reducing costs without losing qualityalso intends to address to the
problem of excessive project duration felt in tkenglard development methodologies
commonly used before the 90, when the time to emlecimany projects affected their
viability.

The RAD model became popular and has been usedotmtargeted to different
database management systems and/or programmingaliges) Some of these RAD
tools are used for development of web applicati@ss,s the case of Omnis [5],
Intraweb [6], RAD-Studio [7], Delphi-for—PHP [8], ®¥Snap [9], TurboGears [10].

However, most of these tools need a significantarhof programming to produce a
working application. The goal of RADX is the creatiof a working application
without any programming. To be sure, in order tetaomize an application in RADX
the programmer may need to edit some configurdties but a working application
is created immediately after defining its data sche

The architecture of RADX is based on the standardCM(Model-View-
Controller) architectural pattern. This patternnisrmally used in programs with
graphical interaction with the user [11]. This stard was proposed by Trygve
Reenskaug in 1978 as a design solution for Snial[te2]. Its main purpose is to
serve as a mediator between the human mental naodklthe digital model that
actually operates in the computer, facilitating tomtrol of large and complex data
structures [13]. In this pattern the model represéme knowledge of the program, the
view is a representation of the model in which lghlighted some of their attributes
and controller serves as an intermediary betweerusier and the system, acting on
the model and providing views of the model in ademce with the user requests.

The MVC pattern is typically used in the design gfaphical applications
implemented in object oriented languages. The @patnts in this pattern are classes
of objects. Nevertheless, the MVC concepts of MpW@&w and Controller can also
be used to structure a graphical application withming used in its design. These
concepts have been successfully used to separmadtstraucture configuration files in
highly configurable web applications [15].

4 Architecture

As mentioned before, RADX integrates two distincimponents: an application
engine for running web applications operation base& ML, a meta-application for

managing applications running on the applicatiogim® This section describes the
architecture of each component.

4.1 Application engine

The application engine’s architecture is basedhenMVC pattern, a pattern often
used in programs with interaction with the user. dAglined in the section 1, we
pretend to use XML as the data format, and XSLhdf@amations as the corner
stones of RADX development. Therefore, we try tgeébaach of the participants in
the MVC standard - Model, View and Controller inetlprocessing of XML

documents.

The model of the RADX applications — the set off@atures - is the management
of data persisted in XML documents. Therefore, thedel can be encoded as a
transformation on the data, generating an updatt document as a result.

The graphical interface of RADX's applications detssof HTML pages that allow
the user to view or interact with the data. ThedéMiH pages are the views and are
obtained by processing the XML data.

It should be noted that the changes implementeitier the model or view need a
set of variables associated with the interactioatestas parameters of the

transformation. For example, the navigation intareplies that the present view only
shows the element (the equivalent of a record)ecty selected. These XSLT
transformation parameters are specific to each arsgrchange during his interaction
with the application.

The controller, as the name suggests, is respensdl controlling the other
constituents of the application, namely the model aiew. As explained earlier,
these two participants in the MVC pattern are XStansformations controlled by a
set of parameters that constitute the state. Tihusder to encode all logic as XSLT
files, the model is implemented as a transformati@t produces a XML document
representing the state.

The application engine is a framework for runningbwapplications. It has three
extension points (usually called "hot spots") facle web applications it runs. Those
extension points are XSLT transformations and eeafresponds to one of the
participants of the MVC model.

Framework
jm————— == Data f----c----- a
| i
: ik :
] X . I
HTTP Controlléir Modeh : . View : HTTP
Request o] Response
| I
> > - l(I }- ! > >
Variables | ' . E _____ 1_ 1 HTML
1 . . o
1
1 .
=
.. 3| State

Fig. 4. Processing an HTTP request in the RADX applicagiogine

To better explain this architecture we presentign E. the processing of an HTTP
request received by the RADX application engine.hew an HTTP request is
received from a web browser it triggers three ti@msations in sequence, producing
an HTML document that is sent back to the browsethe HTTP response. In the
diagram we denote execution flow by solid arrowsariBformations are represented
by circles with a “T” label, connected by dashedoass to their input and output
documents and by dotted arrows to their parameters.

Two DOM objects — Data and State - have a centdal in this process and are
both represented by double-line rectangles in tlagrdm. The former reflects the
application data as persisted in a XML documep fihere is a Data object for each
application managed by the application engine. [@tter is the state of the interaction
with each user; there is a State object for eatiheaaser session of the application
engine. Both these objects are used in all theeestormations: the Data object is the
transformation data source and the State objecttacen the transformation
parameters.

In the beginning of this process the variableshef HTTP request are copied to
the State object for the current user. The firstngformation, representing the
controller, uses Data as the original document amhges the State. The second
transformation, representing the Model, transfotims Data into itself. The third
transformation, representing the View, transfornasalinto HTML and sends it in the
HTTP response.

4.2 Application Manager

The implementation of the application manager wased on “Model 2" that is the
MVC applied to Java web applications. Therefore, tontroller is composed by a
servlet that receives HTTP requests and accorditigelse requests acts on the model
and the view. The Model is a set of Java beansptatesses instructions from the
servlet. The View is composed of JSPs that usemtigel data to produce an HTML
output.

The application manager’s function is to manageagtygications supported by the
application engine. To create the new applicatibrgenerates XSLT configuration
for the application engine using 2nd order transfitions applied to XML Schema
type definitions.

5 Implementation

The RADX system was implemented as two independav& web applications: the
application engine and the application manageryfere both implemented using
the Tomcat servlet container. In this section wghlght the main issues encountered
in the development of these two components.

5.1 Application engine

The application engine has a rather simple desigmas a single servlet that acts as
front controller to all applications requests; thésvlet instances the Application class
for each web application it manages.

The main function of the servlet is to apply theeth XSLT transformations
associated with the model, view and controllexgsained in the previous section. It
also manages the users’ state using the standsstbisenechanism provided by the
servlet container.

Each Application instance contains a DOM object aad collection of
transformations. The main method of this class kegoa transformation on the data
object that is outputted to different objects adomy to its type: model
transformations are copied to the data objectfiesadl serialized in the file system;
controller transformations change the DOM objeqgbresenting the state; view
transformations produces HTML that is outputteth®HTTP response channel.

When the Application class is instanced the cooadmg data file is loaded to its
DOM object as well as all its transformations. libsld be noted that some HTTP
requests just change the current view and do rnistaée model transformations. The
data object is serialized to its data file only wheactually changes. On the other
hand the Application class is thread-safe to englat integrity in concurrent
operations.

5.2 Application manager

The application manager is a standard model 2 J&a[15] application that allows
the creation, customization and deletion of web liappons supported by the
application engine.

The main feature of the application manager isciteation of a new application
when a XML Schema is uploaded. Several second of&&fT transformations are
applied to this document in order to create the K8les that configure the hot spots
of the application engine, as well as the initidXdata file.

The main issue in these transformations is the tifitsation of definitions of
elements containing sets of elements of the sape, twhich would correspond to
entities in a relational model. For this purpose wge the XML schema sequence
indicator.

Element types in XML Schema can be either namednaenymous. To simplify
the detection of type definition with sequence dadiors we start by normalizing
XML Schema documents. As would be expected, thisnabzation is also an XSLT
transformation that unfolds all named type refeeemto a XML Schema with only
anonymous type definitions.

The same procedure for identifying repeated elesnsntised for generating each
of the three XSLT transformations from the normedizschema. For each set of
repeated elements a corresponding set of templatgsroduced in the target
transformation.

Using the application manager the programmer cait #tt individual
transformations to customize its application. Insincases the XSLT encoding the
view will be the first candidate for customizationorder to change the application
graphical appearance. The controller transformatidimeed to be edited only to add
or remove access to model operations. We expecehtiuzl transformation to be the
one to require less customization.

6 Conclusion

This article presents RADX, a system for developnaénmveb applications prototypes
based on XML documents in a rapid and easy way.

The fact that in RADX data persistence and graplhintarfaces are both based on
XML, led us to use XML transformations in the implentation of the logic layer.
The architecture of the Application Engine of RADX based on applying three
successive transformations corresponding to thestitoents of the MVC

architectural pattern. We also highlight the massues encountered during the
development of the RADX system.

As it is an ongoing project is not yet possiblartake an assessment of the RADX
system efficiency. In any case, since it is a systiesigned for prototyping, its main
advantage is the ease of applications creatioradaduacy of the user’s needs.

References

Extensible Markupg.anguage (XML), http://www.w3.org/XML/

XSL Transformations (XSLT), http://www.w3.0rg/TR/¥s|

XML Schema Definitions (XSD), http://www.w3.org/XMEchema

Martin, J: Rapid Application Development. Macmill&oll Div, New York, (1991)

Omnis Studio - http://www.omnis.net;

Intraweb - http://www.atozedsoftware.com/intraWeb;

RAD-Studio - http://www.codegear.com/products/radiiu

Delphi-for - PHP - http://www.codegear.com/prodiaésphi/php;

WebSnap - http://dn.codegear.com/article/27404;

TurboGears - http://lwww.turbogears.org.nyud.net/;

Gamma, E., Helm, R., Johnson, R., Vlissides, J.:dDeBiatterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley Profesaliofi994)

Reenskaug, T.. Models-Views-Controllers, Xerox PARC hmézal note,

http://heim.ifi.uio.no/trygver/themes/mvc/mvc-indbtml, (1979)

. Reenskaug, T.: The Model-View-Controller (MVC) - Itsas® and Present,

http://heim.ifi.uio.no/trygver/themes/mvc/mvc-indeiml, (2003)

14. Leal, J., Domingues, M., Rapid development of wdbrfaces to heterogeneous systems,
SOFSEM 2007: Current Trends in Theory and Practiid@omputer, pp 716-725, Lecture
Notes in Computer Science, Springer-Verlag.

15. Singh, T., Sterns, B., Johnson, M., et al.: Desigiinterprise Applications with the J2EE

Platform, Addison-Wesley, (2002)

PPRPOO~NOURAWNPRE

[En
N

A
w

