
XCentric: Constraint based XML Processing

Jorge Coelho1 and Mário Florido2

1 Instituto Superior de Engenharia do Porto & LIACC
Porto, Portugal

2 University of Porto, DCC-FC & LIACC
Porto, Portugal

{jcoelho,amf}@ncc.up.pt

Abstract. Here we present the logic-programming language XCentric,
discuss design issues, and show its adequacy for XML processing. Distinc-
tive features of XCentric are a powerful unification algorithm for terms
with functors of arbitrary arity (which correspond closely to XML doc-
uments) and a rich type language that uses operators such as repetition
(*), alternation, etc, as types allowing a compact representation of terms
with functors with an arbitrary number of arguments (closely related to
standard type languages for XML). This new form of unification together
with an appropriate use of types yields a substantial degree of flexibility
in programming.

1 Introduction

XML is a powerful format for tree-structured data. A need for programming
language support for XML processing led to the definition of XML programming
languages, such as XSLT [28], XDuce [14], CDuce [1], Xtatic [29] and Xcerpt [2].

In this paper we present XCentric, a logic programming (LP) language based
on the unification of terms with flexible arity function symbols extended with
a new type system for dealing with sequences and new features for searching
sequences inside trees at arbitrary depth.

The main features of XCentric rely on the use of:

Regular expression types: regular expression types give us a compact rep-
resentation of sequences of arguments of functors with flexible arity. They also
add extra expressiveness to the unification process. Let us present an illustrating
example.

The following declaration introduces regular expression types describing terms
in a simple bibliographic database:

:−type bib −−−> bib (book+).
:−type book −−−> book (author+, name) .
:−type author −−−> author (s t r i n g) .
:−type name −−−> name(s t r i n g) .

Type expressions of the form f(...) classify tree nodes with the label f (XML
structures of the form < f > ... < /f >). Type expressions of the form t∗ denote

a sequence of arbitrary many ts, and t+ denotes a sequence of arbitrary many
ts with at least one t. Thus terms with type bib have bib as functor and their
arguments are a sequence of one or more books. Terms with type book have book
as functor and their arguments are a sequence consisting of one or more authors
followed by the name of the book.

The next type describes arbitrary sequences of authors with at least two
authors:

:−type type a −−−> (author (s t r i n g) , author (s t r i n g)+).

A new form of unification: in the previous example, to get the names of all
the books with two or more authors in XCentric, one just needs the following
query (= ∗ = stands for unification of terms with flexible arity functors and t :: τ
means that term t has type τ):

?−bib (, book (X: : type a , name(N)) ,)=∗=BibDoc: :b ib .

This unifies two terms typed by bib. The type declaration in the first argument is
not needed because it can be easily reconstructed from the term. In this case we
bind the variable N to the content of the name element of the first book element
with at least two authors. Note how the type type a in the first argument of the
unification is used to jump over an arbitrary number of arguments and extract
the name of the first book with at least two authors. All the results can then
be obtained, one by one, by backtracking. This goes far beyond standard Prolog
unification.

Sequence variables and unification of terms with functors of flexible arity gives
XCentric the power of partially specifying terms in breadth (i.e. within the sub-
terms of the same term). In XCentric one can also partially specify a term in
depth using the deep predicate. A query term of the form deep(t1, t2) matches
all subterms of t2 that match the term t1. Consider the following example (in
XCentric we can explicitly refer to sequences of terms t1, ..., tn as < t1, ..., tn >):
suppose we want to find sequences of two authors in a document to which the
variable XML is bound. We can use the query:

?−deep (<author (A1) , author (A2)> ,XML) .

The names of the two authors will bind variables A1 and A2, and all solutions
can be found by backtracking.

The main contributions of XCentric to the logic programming paradigm, are
to give programmers a tool that makes it much easier and more declarative to
process XML, and to show the impact of a new form of unification (typed unifica-
tion of terms with functors of flexible arity) in programming. Note that subjects
such as databases, data-mining and Web programming, are quite relevant appli-
cation areas of logic programming, and in these areas XML is becoming more
and more a standard data format for information exchange.

In this paper we show the previous claim about XCentric, showing its con-
tribution with respect to:

Prior non-LP XML processing work: mainstream languages for XML pro-
cessing such as XSLT ([28]), XDuce ([14]), CDuce ([1]) and Xtatic ([29]) rely
on the notion of trees with an arbitrary number of leaf nodes to abstract XML
documents. However these languages are based on functional programming and
thus their key feature is pattern matching, not unification. Regular expression
patterns are often ambiguous and thus functional XML processing languages
presume a fixed matching strategy for making the matching deterministic. In
contrast, XCentric just leaves ambiguous matching non-deterministic and ex-
amines every possible matching case by backtracking. This makes it possible to
write complicated XML processing tasks in a quite declarative way. Although
pattern matching is desirable in many applications of XML processing, there are
situations where the use of unification is a gain. It is known that unification may
even improve efficiency in some cases (by careful use of the logical variable) and
it is on the basis of a truly relational programming, improving declarativeness
and modularity in many cases. In this paper we show examples where these sit-
uations also arise in XML processing. This, and the use of unification of terms
with functors of flexible arity, show that there are aspects of XML processing in
XCentric that do not have counterparts in other approaches to XML processing.

Prior LP work: some Prolog systems have libraries [23, 22] to deal with XML.
These libraries translate XML documents to a list of Prolog terms and use
standard Prolog for processing. XCentric uses recent results of unification the-
ory (unification of terms with functors of flexible arity [17, 7]) and novel type
languages based on regular types [8, 6], as the theoretical basis of a logic pro-
gramming language for XML processing where sequences of terms are first class
objects of the language. This leads to a much more declarative way of process-
ing XML when compared to the standard Prolog libraries for XML processing.
Xcerpt ([2]) is a logic programming query language for XML which also used
terms with flexible arity function symbols as an abstraction of XML documents.
It used a special notion of term (called query terms) as patterns specifying selec-
tion of XML terms much like Prolog goal atoms. The underlying mechanism of
the query process was simulation unification ([3]), used for solving inequations
of the form q ≤ t where q is a query term and t a term representing XML data.
Concepts behind Xcerpt are more directed to query languages and technically
quite different from the typed unification of terms with functors of flexible arity
used in XCentric.

Regular expression matching was also used in [18, 19] to extend context sequence
matching with context and sequence variables. This work dealt with matching,
not unification, and it was not integrated in a programming language. Unification
of terms with functors of flexible arity generalizes previous work on word unifi-
cation ([15]), equations over lists of atoms with a concatenation operator ([10])
and equations over free semigroups ([21]), by enabling the use of as many flexi-
ble arity symbols as we wish and of arbitrarily nested terms. Recently, in [16], a
specific language was defined to denote relations between XML documents. This

language used its own new syntax, based on mainstream functional languages for
XML processing, and its definition stresses the usefulness of an approach based
on the truly relational programming paradigm: logic programming.

Monadic Datalog has also been successfully applied to XML querying in the
absence of data values [13].

Note that the work described in this paper was first presented in a previous
paper from the authors ([5]).

In the rest of the paper we assume that the reader is familiar with logic
programming [20] and XML [26]. We start in section 2 by presenting some ex-
amples of the language. In section 3 we present sequence variables and flexible
arity functions and in section 4 we present sequence types. In section 5 we ex-
plain the role of types in the unification process, and finally in section 6 we
conclude and outline the future work.

2 XCentric by example

Here we present several simple examples to familiarize the reader with the lan-
guage before presenting the details.

In XCentric, an XML document is translated to a term with flexible arity
function symbol. This term has a main functor (the root tag) and zero or more
arguments. Although our actual implementation translates attributes to a list of
pairs, since attributes do not play a relevant role in this work we will omit them
in the examples, for the sake of simplicity.

Example 1. Consider the simple XML file:
<addressbook>

<record>
<name>John</name>
<address>New York</ address>
<email>john . ny@mail . com</ email>

</ record>
. . .

</ addressbook>

Its corresponding term is:
addressbook (record (name(’ John ’) , address (’New York ’) ,

emai l (’ john . ny@mail . com ’)) , . . .)

Suppose that the previous XML file is valid with respect to the following DTD:
<!ELEMENT addressbook (record ∗)>
<!ELEMENT record (name , address , phone ? , emai l)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>

This DTD can be described in XCentric by the type rule:
:−type type addr −−−> addressbook (record (name(s t r i n g) , address (s t r i n g) ,

phone (s t r i n g)? , emai l (s t r i n g))∗)

From now on, whenever a variable is presented without any type information
it is implicitly associated with the universal type any (which types any term).
Through the following examples we will use the built-in predicates xml2pro and

pro2xml which respectively convert XML files into terms and vice-versa. We will
also use the predicate newdoc(Root,Args, Doc) where Doc is a term with functor
Root and arguments Args.

Example 2. Suppose we have an XML document with a catalog of books like
the following one:
<ca ta log>

. . .
<book number=”500”>

<author>Simon Thompson</author>
<name>
Hask e l l : The Craft o f Funct ional Programming (2nd Edit ion)

</name>
<p r i c e>41</ p r i c e>
<year>1999</ year>

</book>
. . .

</ cata log>

To get all the books with two or more authors using SWI-Prolog [23] (which has
a quite good library for processing XML in Prolog) we need the following code:
pbib ([element (, , L)]) :−

pbib2 (L) .
pbib2 ([]) .

pbib2 ([element (’ book ’ , , Cont) | Books]) :−
authors (Cont) , ! , pbib2 (Books) .

pbib2 ([|Books]) :−
pbib2 (Books) .

authors ([element (’ author ’ , ,) , element (’ author ’ , ,) |R]) :−
write name (R) .

write name ([element (’name ’ , , [N])]) :−
wri te (N) , n l .

write name ([|R]) :−
write name (R) .

To do the same in XCentric, assuming that the XML file is translated to a term
binding variable BibDoc, the following query is enough:

ca ta log (, book (name(N) , author () , author () ,) ,) =∗= BibDoc .

All the solutions can then be obtained, one by one, by backtracking. The sim-
plicity and declarativeness of the second solution speaks by itself when compared
to the first one.

If we want to verify the document consistency with respect to a given DTD, we
just have to replace in the previous query, the variable BibDoc, by the typed
variable BibDoc :: tc, where type tc is the translation of the DTD to its corre-
sponding XCentric type.

2.1 Incomplete terms in depth

XCentric also provides predicates that allow the programmer to find a sequence
of elements at arbitrary depth, to search for the nth occurrence of a sequence of
elements and to count the number of occurrences of a sequence. The predicates
are deep/2, deepp/3 and deepc/3, respectively.

Example 3. This example is based on a medical report using the HL7 Patient
Record Architecture and inspired by the XQuery use cases available at [27].
Given report1.xml (figure 1), find what happened between the first incision and
the second incision and write the result in a file named critical.xml:

<r epor t>
<s e c t i on>

<s e c t i o n t i t l e>Procedure</ s e c t i o n t i t l e>
<s e c t i on con t en t>

The pat i en t was taken to the operat ing room where she was placed . . .
<ane s the s i a>induced under gene ra l ane s the s i a .</ ane s the s i a>

<prep>
<act ion>A Foley ca the t e r was placed to decompress </ act ion> . . .

</prep>
< i n c i s i o n>

A cu r v i l i n e a r i n c i s i o n was made <geography> in the midl ine
immediately i n f r a umb i l i c a l </geography> and the subcutaneous
t i s s u e was d iv ided <instrument> us ing e l e c t r o c au t e r y .

</ instrument>
</ i n c i s i o n>
The f a s c i a was i d e n t i f i e d and <act ion> #2 0 Maxon stay suture s were
placed on each s i d e o f the . . . </ act ion>

< i n c i s i o n>
The f a s c i a was d iv ided us ing <instrument> e l e c t r o c au t e r y
</ instrument> and the peritoneum was entered . </ i n c i s i o n>

<observat ion> The smal l bowel was i d e n t i f i e d . </ observat ion> . . .
</ s e c t i on con t en t>

</ s e c t i on>
</ repor t>

Fig. 1. report1.xml

t r a n s l a t e : −
xml2pro (’ r epor t1 . xml ’ ,Rep) ,
deep (< i n c i s i o n () , C r i t i c a l , i n c i s i o n ()> ,Rep) ,
newdoc (c r i t i c a l s e q u e n c e , C r i t i c a l ,FL) ,
pro2xml (FL, ’ c r i t i c a l . xml ’) .

The result is:
<c r i t i c a l s e q u e n c e>

The f a s c i a was i d e n t i f i e d and <ac t i on> #2 0 Maxon stay
suture s were placed on each s i d e o f the . . .</ ac t i on>

</ c r i t i c a l s e q u e n c e>

2.2 Unification and XML Processing

Mainstream XML processing languages rely on pattern matching. In our ap-
proach we also use unification for XML processing. In this section we present
some examples where unification has advantages over pattern matching.

Example 4. In functional based languages for XML processing transformations
are unidirectional, enabling the use of a description of the structure of an XML
document and the use of pattern matching to extract some of its subparts.

Being a relational language, XCentric can easily describe the structures of
two documents and relate their subparts. For example, we can write the following
simple predicate in XCentric for converting between fragments of two kinds of
address books.
t r an s l a t e (<person (name(N) ,C1)> ,<card (person−name(N) ,C2)>) :−

addre s s content (C1 ,C2) .

addre s s content (<> ,<>) .

addre s s content (<A1 , address (A) ,A2> ,<L1 , l o c a t i on (A) , L2>) :−
addre s s content (<A1 ,A2> ,<L1 , L2>) .

This relates a person element and a card element, where the pattern of the first
argument of translate requires the person to contain a name element followed by

a sequence of address elements, and the second argument describes the structure
of the card containing a person-name element follower by a sequence o loca-
tion elements. Variable N , which appears in both arguments, specifies that its
corresponding subparts, the contents of name and person-name, are the same.
Predicate address content relates address in a person element with location in
the corresponding card element. This is trivially expressed in an unification-based
relational language such as XCentric, but impossible to express in a functional
(thus unidirectional) language based on pattern matching. Note that variables
occurring in sequences, are interpreted in the domain of sequences, thus, in this
program, unification is not Prolog unification, but the non-standard unification
of XCentric. Also note the gain in modularity: this predicate can be used in
three different ways. 1) to transform an XML document with the format spec-
ified by the first argument of translate into the format specified by its second
argument, 2) to do the opposite transformation, or 3) to guarantee that two
different documents in the two different formats are related in the way specified
by the predicate (corresponding, respectively, to call it with the first, second or
both arguments ground). In a functional-based language these three different
behaviors have to be implemented by three different functions.

Example 5. Suppose we have an XML document that represents an article entry:
<text>
Mainstream languages f o r XML proce s s ing such as XSLT <r e f>W3C
</ r e f> , XDuce <r e f>Hosoya </ r e f> , CDuce <r e f>Frish Casagna and Benzaken
</ r e f> and Xtat ic <r e f>Pierce</ r e f> r e l y on the not ion o f t r e e s with an
a rb i t r a r y number o f l e a f nodes to abs t rac t XML documents .

</ text>

This document has references like <ref>W3C</ref> which appear in a simple
bibliography database, where each ref element has a corresponding author:
<b ib l i og raphy>

<bib>
<author>Coelho and Flor ido</author>
<name>Type−based XML Proces s ing in Logic Programming</name>

</bib>
<bib>

<author>Hosoya</author>
<name>XDuce: A Typed XML proce s s ing language</name>

</bib>
. . .

</ b ib l i og raphy>

The idea is the following:

1. Create a new bibliography document only with references occurring in the
article but ordered by author name.

2. Create a new article were each reference is replaced by a number correspond-
ing to the author order in the bibliography.

As result we want the following:
<text>
Mainstream languages f o r XML proce s s ing such as XSLT <i>4</ i> ,
XDuce <i>2</ i> , CDuce <i>1</ i> and Xtat ic <i>3</ i> r e l y on the not ion
o f t r e e s with an a rb i t r a r y number o f l e a f nodes to abs t rac t XML
documents .

</ text>

and the bibliography file as:

<b ib l i og raphy>
<bib>

<index> 1 </ index>
<author>Frish Casagna and Benzaken</author>
<name>CDuce an XML−c e n t r i c genera l−purpose language</name>

</bib>
. . .

</ b ib l i og raphy>

To achieve this result using a similar method but based in pattern matching ap-
proach, note that, as we only know all the references after processing the entire
document, we must process the document, retrieve all the references found, order
the references and then process the document a second time to replace the refer-
ences with the corresponding indexes. Using unification it is possible to process
the document only once: the references are replaced by free variables which are
associated with the corresponding references (by means of an association list) cre-
ating an intermediate document which is not a ground term. We can then order
the association list by author and bind the corresponding variables with the cor-
rect index. The document now becomes a ground term (by the use of unification)
which is the desired output. Note that we only processed the document once (the
complete implementation can be found at http://www.ncc.up.pt/xcentric/).

3 Sequence Variables and Flexible Arity Functions

Here we briefly review the notions of sequence, sequence variable and functor
with flexible arity. A detailed description of this subject and of (untyped) uni-
fication of flexible arity terms can be found in [7]. We extend the domain of
discourse of Prolog (trees over uninterpreted functors) with finite sequences of
trees.

Definition 1. A sequence t̃, is defined as follows: ε is the empty sequence and
t1, t̃ is a sequence if t1 is a term and t̃ is a sequence.

We now proceed with the syntactic formalization, by extending the standard
notion of Prolog term with flexible arity function symbols and sequence variables.

Consider an alphabet consisting of the following sets: the set of standard
variables, the set of sequence variables, the set of constants, the set of fixed arity
function symbols and the set of flexible arity function symbols.

Definition 2. The set of terms over the previous alphabet is the smallest set
that satisfies the following conditions:

1. Constants, standard variables and sequence variables are terms.
2. If f is a flexible arity function symbol and t1, . . . , tn (n ≥ 0) are terms, then

f(t1, . . . , tn) is a term.
3. If f is a fixed arity function symbol with arity n, n ≥ 0 and t1, . . . , tn are

terms such that for all 1 ≤ i ≤ n, ti does not contain sequence variables as
subterms, then f(t1, . . . , tn) is a term.

Remark 1. To avoid further formality, we assume that the domain of interpre-
tation of variables is predetermined by the context where they occur. Variables
occurring in a constraint of the form t1 = ∗ = t2 are interpreted in the domain
of sequences of trees, otherwise they are standard Prolog variables.

3.1 Sequences

We use a special kind of terms, here called sequence terms, for implementing
sequences.

Definition 3. A sequence term, t̄ is defined as follows:

– ε is a sequence term that represents the empty sequence.
– seq(t, s̄) is a sequence term if t is a term and s̄ is a sequence term.

Definition 4. A sequence term in normal form is defined as:

– ε is in normal form
– seq(t1, t2) is in normal form if t1 is not of the form seq(t3, t4) and t2 is in

normal form.

Sequence terms in normal form are the internal representation of sequences. For
example, seq(a, seq(b, ε)) represents sequence a,b. Note that for simplification
purposes we drop the seq operators for sequences of just one element.

4 Types

In this section we present the type language starting with a description of Regular
Types [11] and then their extension to type sequences of terms.

4.1 Regular Types

Definition 5. Assuming an infinite set of type symbols, a type term is defined
as follows:

1. A constant symbol (we use a, b, c, etc.) is a type term.
2. A type symbol (we use α, β, etc.) is a type term.
3. If f is a flexible arity function symbol and each τi is a type term, f(τ1, ..., τn)

is a type term.

Definition 6. A type rule is an expression of the form α → Υ where α is a
type symbol and Υ is a finite set of type terms.

Sets of type rules correspond to regular term grammars [25].

Example 6. Let α and β be type symbols, α → {a, b} and β → {nil, tree(β,
α, β)} are type rules.

Definition 7. A type symbol α is defined by a set of type rules T if there exists
a type rule α → Υ ∈ T .

Regular types are the class of types that can be defined by finite sets of type rules.
In XCentric a type rule α → {τ1, . . . , τn} is represented by the declaration:

:-type α - - -> τ1; . . . ; τn.

It is well known that regular types can be associated with unary logic programs
(see [31, 30]). For every type symbol α, there is a predicate definition α, such
that α(t) is true if and only if t is a term with type α (note that we are using
the type symbol as the predicate symbol).

4.2 Regular Expression Types

We now define regular expression types, which describe sequences of values: a*
(sequence of zero or more a’s), a+ (sequence of one or more a’s), a? (zero or one
a), a|b (a or b) and a,b (a followed by b). We translate regular expression types
to our internal sequence notation:

a∗ ⇒ α∗ → {ε, seq(a, α∗)}
a+ ⇒ α+ → {a, seq(a, α+)}
a? ⇒ α? → {ε, seq(a, ε)}
a|b ⇒ α| → {a, b}
a, b ⇒ αseq → {seq(a, seq(b, ε))}

Note that DTDs (Document Type Definition) [26] can be trivially translated
to regular expression types. XCentric also has some XML Schema [24] support,
basic types like string, integer, boolean and float, bounding the occurrences of
sequences and orderless sequences are supported.

5 Types in the unification process

In this section we explain the role of types in the unification process.

Definition 8. A type declaration for a term t with respect to a set of type rules
T is a pair t :: α where α is a type symbol defined in T .

Example 7. Consider the equation a(X, b, Y) :: αa = ∗ = a(a, b, b, b) :: µ, where
αa is defined by the type rules:

αa −→ {a(αx, b, αy)}
αx −→ {µ}
αy −→ {b, (b, αy)}

then this unification gives only two results:

1. X = a and Y = b, b
2. X = a, b and Y = b

Note that without the types the solution X = a, b, b and Y = ε would also be
valid.

Implementation: An equation of the form t1 :: α1 = ∗ = t2 :: α2 is translated
to the following query:

? - t1 = ∗ = t2, α1(t1), α2(t2).

and the respective predicate definitions for α1 and α2 (as described in section
4). Correctness of t1 :: α1 = ∗ = t2 :: α2 comes for free from the correctness of
the untyped version of = ∗ = (presented in [7]) and noticing that if ?− t1 = ∗ =
t2, α1(t1), α2(t2) succeeds then t1θ ∈ [α1]T ∩ [α2]T , where θ is the substitution
resulting from t1 = ∗ = t2.

6 Conclusions and Future Work

XCentric is an extension of Prolog with a richer form of unification and regular
types, designed specifically for XML processing in logic programming. It enables
a highly declarative style of XML-processing and it is based on a sound foun-
dation of a very small core of well studied key features, such as unification of
terms with flexible arity [7, 17] and regular types for logic programming [31, 12].
Also note that XCentric is now being used successfully in practice in some areas,
such as website auditing and verification [9, 4]. Ongoing work is being done to
improve efficiency. We have benchmarks indicating that, compared with pattern
matching, XCentric is rather inefficient when applied to large files (more than
15 KB). This is, somehow, expected, since pattern matching itself is more ef-
ficient than unification, and pattern-matching based languages, such as XDuce
or CDuce, are compiled, highly optimized languages. Future and ongoing work
on this matter, includes the use of tabling in the unification algorithm and ex-
tending the WAM with new instructions for dealing directly with sequences.
We are also interested on applying XCentric to other application areas besides
XML. Bioinformatics, relying intensively on the notion of sequence, is a natural
candidate for new applications.

References

1. Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-
centric general-purpose language. In Proceedings of the eighth ACM SIGPLAN
Int. Conference on Functional Programming, Uppsala, Sweden, 2003.

2. F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Princi-
ples, Examples, and Semantics. In 2nd Annual International Workshop Web and
Databases, volume 2593 of LNCS, 2002.

3. F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Lan-
guage for XML and Semistructured Data: Simulation Unification. In International
Conference on Logic Programming (ICLP), volume 2401 of LNCS, 2002.

4. Jorge Coelho and Mário Florido. Type-based static and dynamic website verifica-
tion (to appear). In ICIW’07. IEEE Computer Society, 2007.

5. Jorge Coelho and Mario Florido. Xcentric: Logic programming for xml processing.
In 9th ACM International Workshop on Web Information and Data Management.
ACM Press, 2007.

6. Jorge Coelho and Mário Florido. Type-based XML Processing in Logic Program-
ming. In Practical Aspects of Declarative Languages, volume 2562 of LNCS, 2003.

7. Jorge Coelho and Mário Florido. CLP(Flex): Constraint Logic Programming Ap-
plied to XML Processing. In Ontologies, Databases and Applications of SEmantics
(ODBASE), volume 3291 of LNCS. Springer Verlag, 2004.

8. Jorge Coelho and Mário Florido. Unification with flexible arity symbols: a typed
approach. In Informal proceedings of the 20th International Workshop on Unifica-
tion (UNIF’06), Seattle, USA, 2006.

9. Jorge Coelho and Mário Florido. VeriFLog: Constraint Logic Programming Ap-
plied to Verification of Website Content. In Int. Workshop XML Research and
Applications (XRA’06), volume 3842 of LNCS. Springer-Verlag, 2006.

10. A. Colmerauer. An introduction to Prolog III. Communications of the ACM,
33(7):69–90, 1990.

11. P. Dart and J. Zobel. A regular type language for logic programs. In Frank
Pfenning, editor, Types in Logic Programming. The MIT Press, 1992.

12. Mário Florido and Lúıs Damas. Types as theories. In Proc. of post-conference
workshop on Proofs and Types, Joint International Conference and Symposium on
Logic Programming, 1992.

13. Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power of
languages for web information extraction. J. ACM, 51(1):74–113, 2004.

14. Haruo Hosoya and Benjamin Pierce. XDuce: A typed XML processing language.
In Third Int. Workshop on the Web and Databases, volume 1997 of LNCS, 2000.

15. J. Jaffar. Minimal and complete word unification. Journal of the ACM, 37(1):47–
85, 1990.

16. Shinya Kawanaka and Haruo Hosoya. biXid: a bidirectional transformation lan-
guage for XML. In John H. Reppy and Julia L. Lawall, editors, ICFP, pages
201–214. ACM, 2006.

17. Temur Kutsia. Unification with sequence variables and flexible arity symbols and
its extension with pattern-terms. In Joint AISC’2002 - Calculemus’2002 confer-
ence, LNAI, 2002.

18. Temur Kutsia. Context sequence matching for xml. In Proceedings of the 1th Int.
Workshop on Automated Specification and Verification of Web Sites, 2005.

19. Temur Kutsia and Mircea Marin. Can context sequence matching be used for
querying xml? In Laurent Vigneron, editor, Proceedings of the 19th Int. Workshop
on Unification (UNIF’05), pages 77–92, Nara, Japan, 22 April 2005.

20. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition,
1987.

21. G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik USSR, 103:147–236, 1977.

22. Pillow: Programming in (Constraint) Logic Languages on the Web.
http://clip.dia.fi.upm.es/Software/pillow/pillow.html, 2001.

23. SWI Prolog. http://www.swi-prolog.org/.
24. XML Schema. http://www.w3.org/XML/Schema/, 2000.
25. J.W. Thatcher. Tree automata: An informal survey. Prentice-Hall, 1973.
26. Extensible Markup Language (XML). http://www.w3.org/XML/, 2003.
27. XQuery Use Cases. http://www.w3.org/TR/xquery-use-cases/, 2005.
28. XSL Transformations (XSLT). http://www.w3.org/TR/xslt/, 1999.
29. Xtatic. http://www.cis.upenn.edu/˜bcpierce/xtatic/, 2004.
30. E. Yardeni and E. Shapiro. A type system for logic programs. In The Journal of

Logic Programming, 1990.
31. Justin Zobel. Derivation of polymorphic types for prolog programs. In Proc. of

the 1987 International Conference on Logic Programming. MIT Press, 1987.

