
An importer of virtual 3D City Models datasets
into a spatiotemporal database

Wagner Franchin1, Alexandre Carvalho1, José Moreira2, A. Augusto de Sousa1

and Cristina Ribeiro1

1 INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200-465 Porto,
Portugal - [wjf, alexandre.carvalho, aasousa, mribeiro]@inescporto.pt

2 IEETA, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193
Aveiro, Portugal - jose.moreira@ua.pt

Abstract. Geographical Information Systems (GIS) have an important
role in a wide range of application domains, both for the management of
spatial data and as a decision support tool. For this reason virtual 3D
city models are becoming increasingly complex with respect to their spa-
tial, thematic structures and temporal aspects. In this paper we present
Importer CityGML, a tool for parsing and importing XML datasets into
a spatiotemporal database prototype system.

Keywords: Spatiotemporal Databases, CityGML, Virtual 3D City Mod-
els

1 Introduction

The need of 3D City Models is growing, especially for organizations involved in
urban and landscape planning, cadastre, real estate, utility management, geol-
ogy, tourism, army, etc. Geographical Information Systems (GIS) have an im-
portant role in a wide range of application domains, both for the management of
spatial data and as a decision support tool. However, current GIS have been de-
veloped to deal efficiently with the current state of spatial data, but they do not
include temporal features to deal with previous states about spatial information.

To cope with this limitation, Carvalho et al. [1] present a spatiotemporal
database prototype system (Action! ), developed on the top of an Oracle database
management system and TimeDB [2], for efficient representation, querying and
visualization of time-evolving urban information.

Further, CityGML [3] is a general information model for representing geovir-
tual 3D environments such as virtual 3D city models. It introduces classes and
relations for topographic objects of urban environments and regional models.

This paper presents a tool to transfer information from a CityGML files into
Action!, in order to benefit from the spatiotemporal querying and visualization
capabilities of this system.



2 Related work

Generating virtual city environments has already been addressed in several
works. The initial methods were based on computer aided architectural design
where detailed measurement of the geometry was regarded as essential. Kolbe
et al. [3] proposing a new model based on GML to describe data for any kind
of city, Hagedorn and Dollner [4] describing an approach to visualize and ana-
lyze CAD-based 3D building information models (BIM) within 3D virtual city
models, and Google SketchUp [5] allowing creating, visualizing and modifying
3D representations, are notable examples.

CityGML [3] is an open data model structure and standardized code based
on XML for storing and exchanging virtual 3D city models. The common infor-
mation model behind CityGML defines classes and relationships for the most rel-
evant topographic objects in cities and regional models with respect to their ge-
ometrical, topological, semantic and appearance properties. The thematic model
of CityGML considers thematic fields like Digital Terrain Models, sites (i.e. build-
ings), vegetation (solitary objects and also areal and volumetric biotopes), water
bodies, transportation facilities or city furniture.

Finally [6] Kolbe et al. present a 3D geo database for CityGML. The CityGML
data model is mapped into a relational database schema and an import/export
tool was realized for processing of CityGML and GML structures. The system
is not prepared to manage temporal information.

3 Importer CityGML

Importer CityGML is a tool for parsing and importing CityGML datasets into
Action!. The system was developed in Java and uses classes and interfaces pro-
vided by XML Beans.

The data model defined in Action! is based on the CityGML schema and
classes. As CityGML data files may hold objects with a null identifier, the pri-
mary key of each relation in Action! is a unique identifier generated automati-
cally.

The CityGML class Building is mapped into a relation also named Build-
ing, to store the details about constructions, such as buildings and houses. The
OuterBuildingInstallation relation stores information about the outer parts of
buildings, for example, cash, chimneys or staircases. BoundarySurface relation
holds information regarding the parts of a building, e.g. inner and outer walls,
ceiling or roof.

The CityGML classes CityFurniture, Generics, LandUse, Transportation, Veg-
etation and WaterBody were aggregated into a single relation ThematicObject,
as they share the same set of attributes. The CityObjectGroup class is repre-
sented in the database by the CityObjectGroup relation. This relation stores
information about groups of objects in a city, for example, an university. Group-
Member relation identifies the elements composing a group of objects, which can
be groups of buildings or thematic objects.



The relation Geometry Object stores the geometric information and the level
of detail of all city objects in CityGML data files. It also includes a tempo-
ral component defined by two additional attributes (start date and end date),
denoting a valid time interval, and an attribute of type BLOB (Binary Large
Object) to store all elements that make up a geometry in a JME (Java Monkey
Engine [7]) compatible format, used by the Action! visualization tool.

SurfaceMember relation stores information about the type of geometry sur-
faces (Polygon, TexturedSurface, OrientableSurface or SurfaceMember) and Co-
ordinateGeometry is the relation holding geometric coordinates of each surface.
The coordinates are stored in an Oracle Spatial column of type Sdo Geometry
and so, they ready to be used by Oracle Spatial’s operations.

To make the import into the database easier, each relation in the database
model has a corresponding Java class. During the parsing, the information
contained in the CityGML file is stored in a list of objects in Java. For instance,
each building has a list of objects composed by geometry objects, boundary
surfaces or outer building installations. Each boundary surface has another list
of objects composed by geometry objects and so on.

After the parsing phase, the system has all file information in memory (in a
city object list) and starts importing data into the database. The first relation
to be filled is CityModel. After that, Building, ThematicObject, CityObjectGroup
and Appearance are ready to be filled (see Fig. 1).

Fig. 1. CityModelDB class transfers data to CityModel table and passes the control
to another class.

For example, when there is a Building in city object list, the system first im-
ports the corresponding information into the Building relation and goes to the
next element in this building object list. The next element can be a GeometryOb-
ject, BoundarySurface or OuterBuildingInstallation. If the system finds at this
moment a BoundarySurface or an OuterBuildingInstallation, for example, the
information is sent to the corresponding relations and the processing continues
with the next object in the list.

Figure 2 illustrates a virtual 3D city at different dates, imported from CityGML
into Action!. The original CityGML file was edited before importing to insert
the temporal information.



(a) 1300 (b) 1700 (c) 2000

Fig. 2. Figures (a), (b), (c) shows the virtual in the year of 1300, 1700 and 2000,
respectively.

4 Conclusion and future work

This paper presents the Importer CityGML, a tool for parsing and importing
CityGML datasets into a spatiotemporal database system. The system has ini-
tially been realized as an Oracle 10G R2 Spatial relational database schema.
After parsing the XML file, each CityGML object and its corresponding infor-
mation are imported to the tables into the relational database. The main imple-
mentation goals are to achieve efficient storage, fast processing of CityGML and
spatiotemporal management capability.

Future work will extend the system to parse and import other CityGML
classes which have not been implemented, for example, ParameterizedTexture.

References

1. A. Carvalho, C. Ribeiro, and A. Sousa, ”A Spatio-Temporal Database System Based
on TimeDB and Oracle Spatial” in IFIP International Federation for Information
Processing. Springer, 2006, pp. 205: 11-20.

2. Steiner, A., ”A Generalization Approach to temporal Data Models and Their Im-
plementations”, Phd, Zurich, 1998.

3. T. Kolbe, G. Groger, and L. Plumer, ”Interoperable Access to 3D City Models”.
in First International Symposium on Geo-Information for Disaster Management.
Delft, Netherlands: Springer, March 21-23 2005.

4. B. Hagedorn and J. Dollner, ”High-level web service for 3d building information
visualization and analysis”, in GIS 07: Proceedings of the 15th annual ACM in-
ternational symposium on Advances in geographic information systems. New York,
NY, USA: ACM, 2007, pp. 1-8.

5. ”Google Sketchup.” [Online]. Available: http://sketchup.google.com/ (July 15th,
2009)

6. T. H. Kolbe, G. Knig, C. Nagel, and A. Stadler, ”3d-geo-database for citygml - ver-
sion 2.0.1”, Institute for Geodesy and Geoinformation Science Technische Universitt
Berlin, Tech. Rep., 2009.

7. ”Java Monkey Engine.” [Online]. Available: www.jmonkeyengine.com/ (July 15th,
2009)


