
Schema Languages for XML

Hugo Manguinhas1,

1 INESC-ID – Instituto de Engenharia de Sistemas e Computadores,

Apartado 13069, 1000-029 Lisboa, Portugal

hugo.manguinhas@ist.utl.pt

Abstract. This paper addresses the problem of the characterization of XML

schema languages. The motivation is to offer enough information for one to

choose the schema language that best fits the schema constraint requirements.

XML is a language developed to encode data in a structured human readable

way. Its simple syntax allows the representation of any sort of information from

any particular domain of interest. In order to be portable across platforms and

systems, XML documents often need to be associated to a well defined

structure declaration: a schema. A schema is therefore a formal way to declare

the syntax and to define the relationships and semantics of the attributes of an

XML document, and for that purpose XML schemas languages can be defined.

This paper presents an overview of the actual state of the art in schemas

languages and a comparative analysis of them. As a result of this work valuable

conclusions were reached to anyone willing to formalize schemas for XML

documents.

Keywords: Structured Information, Document Engineering, XML, Schema,

Schema Language, Grammar, Rules, Constraints, DTD, W3C XML Schema,

RELAX NG, Schematron.

1 Introduction

This paper addresses the problem of the representation of schemas using XML

schema languages. The paper presents an overview and a description of the actual

state of the art in schema languages, including a comparative analysis of these

languages.

The results of this work can be valuable to anyone willing to express a schema

using a XML schema language. The conclusions of this paper might help choosing

the schema language and strategies that best fits the schema constraint requirements.

XML documents are structured human readable text representations of data. Since

they are structured, XML documents are efficient solutions to store and transmit

information. But for that purpose, these documents need a well defined structure in

order to be portable across platforms and development systems.

One way to accomplish this wellness is by developing schemas. The purpose of a

schema is to make it possible to describe a class of XML documents using constraints

to define the usage and relationship of their underlying foundations, such as elements,

attributes, attribute values and text. These constraints come from the rules governing

the domain of interest that the particular XML document is supposed to represent.

From an object oriented perspective, schemas can be seen as classes (template for the

objects) and XML documents as objects, instantiations of those classes. Essentially,

schemas can be used to catalogue classes of XML documents. Like in common object

paradigms, schemas can also be composed of other schemas to achieve higher levels

of abstraction.

Schema languages have been developed to better represent the rules and

constraints contained in schemas. For that, schema languages rely on grammars to

define, in a logical form, all the constraints contained in a schema. As a consequence,

those definitions can be used to validate documents that are instances of these

schemas. Many attempts were made to build the ultimate schema language able to

make it possible to express all the required constraints of any schema. This paper will

focus a greater attention in four of these languages: Document Type Definition (here

mentioned in short as DTD), W3C XML Schema (here mentioned in short as WXS),

RELAX NG and Schematron. These four languages were chosen because they

accurately represent the approaches that have guided the evolution of schema

languages over the years.

The next section presents a short description of the four schema languages that

were subject of analysis (Section 2). After that, the concept of grammar and its

relevance for schemas is then presented (Section 3), followed by a description of their

schema constraints according to their lexicon, syntax and semantics (Section 4).

Finally, the paper compares the main characteristics of these languages (Section 5),

presents other complementary work (Section 6), and finishes with conclusions and

future work (Section 7).

2 Schema Languages

In this section, the four languages, which will be the focus of this paper, are

introduced.

XML Document Type Definition [1] (DTD in short) is a subset of the original

SGML DTD [2] (the schema mechanism for SGML). It was developed along with the

XML specification to be the de facto standard for XML schema languages. It was the

first step towards the development of a schema language as we know it. XML DTD is

a W3C Recommendation since February 1998 and its current version is 2.101. The

DTD document declaration can appear internally or externally to the XML document.

The DTD schema language defines the XML document structure through a list of

element and attribute declarations, entities, references, comments and notations. The

last four structure entities are important to the XML document encoding and

processing but are irrelevant for the schema definition.

W3C XML Schema (here WXS in short) [3][4][5], sometimes informally called

XML Schema Definition (XSD), which is the name given to a WXS instance

document. It was the first wide-spread attempt to replace DTDs with a new schema

language that would fit the increasing requirements. WXS is a W3C recommendation

1 http://www.w3.org/2002/xmlspec/dtd/2.10/xmlspec.dtd.

since May 2001 and was the first separate schema language for XML to achieve

Recommendation status by the W3C. WXS is similar to the DTD schema language by

also defining the document structure through a list of declarations of elements and

attributes. Nevertheless, it adds the ability to define types or frames in an object

oriented approach that can be applied throughout the source document.

RELAX NG [6] (REgular LAnguage for XML Next Generation) consists of fusion

of two earlier languages; RELAX2 (REgular Language description for XML)

designed by Murata Makoto and approved by ISO/IEC Technical Report 22250-1;

and TREX3 (Tree Regular Expressions for XML) designed by James Clark which is a

subset of yet another language called XDuce4. RELAX NG was developed to be

easier to learn and use. Two relevant aspects contributed significantly to these

requirements and distinguish it from the other schema languages. The first consists on

the language ability to follow the XML document tree-like structure, opposed to its

leveraging into a list of structure declarations. The second consists on its ability to

uniformly reapply the same primitives to all of the document structures.

The Schematron Assertion Language [7] was developed by Rick Jelliffe at the

Academia Sinica Computing Centre (ASCC). Schematron is available as Final

Committee Draft for the ISO International Standard Organization (ISO/IEC FDIS

19757-3) since October 2004, as part of a broader specification named Document

Structure Definition Language (DSDL) [8]. Schematron differs from the previous

languages in the way it expresses the rules and constraints embodied in the schema. It

uses a tree-like rule based system as opposed to the grammatical oriented constraint

declaration. Inconsistencies are thus identified through the matching of patterns which

encode the document rules.

3 Schemas and Grammars

A grammar is used to define, in a logical form, all the constraints contained in a

schema. As we have seen before, the input is a tree-like object model to be subject of

validation. Any type of grammar capable of express constraints relative to a tree-like

model is suited to this task. One type of grammars capable of satisfying these

requirements is tree grammars, which is the mechanism for describing permissible

trees. Over the years many researchers used tree grammars for schema representation

(DTD, WXS, RELAX NG developers and others).

Tree grammars can be divided into four main subclasses: local, single-type,

restrained-competition and regular tree grammars [9]. A local tree grammar provides

a single content model for all content of each element (terminal). A single-type tree

grammar does not have this tight restriction, but cannot allow two production rules

competing in the same terminal to have different content models. A restrained-

competition tree grammar lifts this restriction. A regular tree grammar accepts any

kind of production. In terms of expression and ordered from the more expressive to

the less expressive (that is some grammars cannot be rewritten as other grammars) are

2 http://www.xml.gr.jp/relax/
3 http://www.thaiopensource.com/trex/
4 http://xduce.sourceforge.net/

regular, restrained-competition, single-type and local tree grammars. DTD, WXS and

RELAX NG are examples of respectively local, single-type and restrained-

competition tree grammars.

Beside tree grammars, other grammars can be used, like rule-based grammars

(rule-based systems). These grammars define assertions about the presence or absence

of patterns in the document object tree. Schema languages using rule-based grammars

are called rule-based schema languages (also called pattern-based or assertion-based)

[10]. Schematron is an example of a schema language based on a rule-based grammar.

Table 1. Analysis of the schema language constraint.

4 Schema Constraints

In this paper the schema constraints expressed in grammars are classified in three

different concepts or levels of abstraction. One is the lexicon, which deals with the

domain vocabulary (identified XML entities); other is the syntax, that deals with

structure per se of the document (tree grammars are specially focus at this part); and

finally, the semantics, also called co-occurrence constraints, which deals with

constraints relative to the content of the document. In this section, this paper evaluates

and compares each schema language according to these three concepts. Table 1

resumes this evaluation showing the languages‟ support for each identified constraint

type and the corresponding XML entity.

Note that each level requires that the previous constraints (belonging to the

previous level) are matched; otherwise no further constraints can be evaluated. So if a

document is said to be semantically correct, it means that it is also syntactically, and

consequently lexically correct.

4.1 Lexicon

The schema language must include support for elements, attributes, attribute values

and text, and also the support for namespaces.

In this subsection, this paper evaluates the capacity for the language to support the

lexicon present in the tree object model. For validation purposes only a subset of the

XML language is used. Things like parameter entities, processing instructions, DTD

and CDataSections are processed and discarded when parsing the XML document. So

the tree object model is reduced to four basic entities: Elements, Attributes (Attr),

Attribute Values (AttrValue) and Text (Comments are excluded since they do not

represent relevant content information). The Figure 1 represents the basic entities that

are involved in an XML document and their relations.

class Parsed XML

Document ContentElement

Attribute

- name: QName

AttrValue

Text

- data: String

+element

1..1

+content

0..*

+attributes 0..*

+value

1..1

Fig. 1. Basic XML entities that are subject of validation.

All schema languages support the domain vocabulary contained in the model.

WXS only recognizes text when it is the only content contained in an element

(although it allows the declaration of mixed content it does not mandate where the

text must appear when interleaved with elements). DTD recognizes text as PCDATA,

and slightly lifts this restriction, enabling the definition of constraints with text

content in between. RELAX NG and Schematron deal with text as any other kind of

content. Concerning namespaces, only DTD does not have any support for this lexical

entity. WXS supports namespaces naturally in the element and attribute declarations.

RELAX NG allows at any time de selection of a namespace by using a specific

statement (nsName, name or anyName). Schematron supports namespaces by relying

in XPATH5 expressions to construct expression patterns. XPATH expressions support

namespaces naturally using the namespace prefix associated to the names of elements

and attributes, and previously defined in the schema, using the natural XML

definition of namespaces.

5 http://www.w3.org/TR/xpath

4.2 Syntax

Syntax deals with the constraints related to the document structure. How the elements,

attributes, attribute values and text are combined, placed and coded to form a

meaningful environment of information.

In this kind of documents, syntax deals with the structuring of the tree; the

alignment and leveling of elements, and also text, attribute placement and encoding.

Tree grammars are specially focused on the definition of these constraints on tree

structures. One can also use a rule-based grammar to represent structure related

constraints that are missing in the tree grammar, particularly if we are using a less

expressive tree grammar. Nevertheless, the use of rule-based grammars is not always

straight forward and can be very hard to implement. DTD, WXS and RELAX NG are

examples of respectively local, single-type and restrained-competition tree grammars.

As expected RELAX NG, being a restrained-competition tree grammar, offers the

more expressive approach to the representation of structure constraints. These

constraints were classified in 5 different categories: datatypes, mandatory,

cardinality, order and alternatives constraints.

Datatypes

DTD can only express the datatype of attributes in terms of explicit enumerations and

a few coarse string formats. There has no support to describe numbers, dates,

currency values, and so forth. Furthermore, DTD has no ability to express the

datatype of character data. WXS fully supports datatypes by adding a rich set of

primitive types and by enabling the declaration of new derived types from the existing

primitive types. Unfortunately this is done only for attribute values but not to

character data. Some authors [11] discuss the design principles that guided which

types were to be defined and which were to be defined as primitives, accusing WXS

for not having a well defined datatype hierarchy. RELAX NG offers a different

approach to the problem. It firstly decouples the schema language from the set of

datatypes, facilitating the evolution in an independent way of datatypes without

compromising the language. Secondly it allows datatypes to be specified uniformly

for both attribute values and element content; this is in accordance with the

philosophy of uniform treatment for elements and attributes. RELAX NG introduces

the concept of a Datatype Library, which provides a semantic model for a collection

of data. Any collection of datatypes that can fit into the RELAX NG model can

potentially be used as a RELAX NG datatype library, in particular, the datatypes

defined by WXS Part 2 [4].

Mandatory and cardinality constraints

In DTD, the mandatory constraint is enforced by default simply by declaring the

element in the parent element declaration. To declare cardinality of elements the

operators „*‟ (zero or more), „?‟ (zero or one) and „+‟ (one or more) are used. For

attributes the mandatory constraints is satisfied by the REQUIRED (no type for

optional constraint) type defined in the attribute declaration. Text content can only be

constrained to appear in the parent element content or not. In WXS the mandatory

constraint is enforced by the declaration of elements and attributes. For attribute

values this constraints is satisfied by defining a datatypes for the attribute. Cardinality

constraints for elements are enforced using the minOccurs and maxOccurs statements

in particle statements (Element, Choice, Sequence, Any, All and Group statements).

There are no mandatory and cardinality constraints for Text content. Like WXS, in

RELAX NG, the mandatory constraint is enforced by the declaration of an element,

text, attribute or value for an attribute. Cardinality constraints are partially satisfied by

the ZeroOrMore, OneOrMore and Optional statements. As opposed to WXS, RELAX

NG does not support the declaration of explicit and exact cardinality using integer

boundaries. Schematron uses counting operations present in XPATH expressions to

enforce mandatory and cardinality constraints. These counting operations can be

applied to any type of content. Schematron relies on XPATH expressions to pattern

matching and therefore is limited to the language ability to define types. XPATH only

recognizes the numeric and string types but, on the other hand, can enforce these

types at any type of content.

Order constraints

In DTD, order constraints for elements are supported by the ordering of elements

in the children declaration. Nevertheless it stops being supported when mixed content

is defined (Text and elements as content). In WXS the order of elements are defined

by Sequence statement mandating that the order of declaration is the order in the

document structure. No order for text content can be established. In RELAX NG the

order of the statements and declarations mandate the order on the document. Text can

be constrained anywhere in the document content just by placing the Text statement.

Schematron can support these constraints by checking positions, in XPATH

expressions, of elements or text content in the parent element. This may lead to

incredible large expressions and are difficult to combine with alternative and

cardinality constraints.

Alternative constraints

In DTD alternative constraints for elements are supported by the operator „|‟

(choice) and for attribute values with the enumeration of available datatypes (very

few). For text and attributes there is no support for this kind of constraints. In WXS

alternative constraints for elements are enforced by the Choice statement and can be

combined with order constraints. Alternative for attribute values is defined with

datatypes by using the Union (for type composition) and Pattern (for definition of

character strings using regular expressions) statements. Like DTD, WXS does not

support constraints for text and attributes. In RELAX NG, these constraints are

satisfied by the Choice and Interleave statements. These statements can appear at any

time in the schema enabling it to be applied to any type of content. This feature

enables alternatives affecting more than one level in the object tree, making it

possible to have alternative structures (skeletons). This is only possible because

RELAX NG is a restrained-competition tree grammar. For AttrValues, alternatives

can also be satisfied by the Datatype Library. Schematron again uses Boolean

operations present in XPATH expressions to enforce alternatives to any given

scenario, and therefore can be applied to any type of content. Nevertheless, this is not

an immediate and simple way of defining alternatives.

4.3 Semantic constraints

Semantic constraints, also called co-occurrence constraints, are constraints between

two or more values (content information). For example, “if an element has attribute

A, it must also have attribute B” or “if an element has a parent X, then it must have an

attribute Y”. A co-constraint may exist between any kind of entity in the content

model (elements, attributes, attribute values, and text). The occurrence of these

constraints in the document model may lead to the identification of missing, illegal,

duplicate, unordered, misplaced content. This kind of constraints is difficult or

impossible to define using tree grammars (their primary focus is structure) and is

commonly satisfied by rule-based grammars. In this comparison, Schematron is the

most suited (sometimes the only) language to represent this kind of constraints.

Schematron achieves this by being able to represent co-occurrence constraints using

patterns coded in XPATH paths and expressions. Neither DTD, WXS and RELAX

NG can. Some considerations about validation using rule-based constraints and

particular the XPATH ability to express them are discussed in [12].

In this paper, a new subgroup of co-occurrence constraints is added, the relational

constraints. These are a particular kind of co-occurrence constraints that deal with

relational concepts like uniqueness, keys (identity) and key-references. These

concepts allow systems to apply normalization according to the normal forms to

schemas and benefit from them [13]. DTD (ID for identification and IDREF for key-

references) and WXS (Unique for uniqueness, Key for keys and KeyRef for key-

references) have explicit statements responsible for assuring this kind of constraints.

Nevertheless, DTD only supports keys and key references for attributes and only one

at a time. DTD has no support for the uniqueness constraint. On the other hand, WXS

supports relational constraints for any kind of XML entities including combinations of

them (e.g. a key composed of two separate attributes). RELAX NG has no support for

relational constraints. Schematron can support these constraints making use of the

search capacity of the language to assure uniqueness and existence of the keys.

5 Language Characteristics

In this section some of the main characteristics of the languages under analysis are

discussed. Table 2 gives an overview of these characteristics, ordering each schema

language from the most compliant with the feature to the less.

Expressivity

Expressivity is the measurement of the constraints enforced by the schema

language. The more constraints a schema language allows the more expressive the

language is. DTD is the less expressive language studied. It offers a limited set of

statements allowing the enforcement of only a few constraints. Although the

constraints available are able to cover most of schemas constraint requirements, it

lacks the ability to define other, more refined constraints. Even though some

constraints require a little more work for the developers to be defined, WXS offers a

greater set of statements enabling the declaration of many constraints. One important

disadvantage of this language is the inability to deal with character data as typed

content like RELAX NG. The source for the RELAX NG capacity to express

constraints is the ability to apply the same statements to many different contexts.

Being a restrained-competition tree grammar also contributed to wider the number of

constraints being enforced. Schematron is the most expressive language of all,

allowing the enforcement of almost all the constraints identified for a document.

Reusability

Reusability is the ability of a language to pack and reapply sets of statements in

different contexts. DTD has no immediate way of reusing statements in the schema

(only by entity replacement of attributes). Reusability in WXS is satisfied with the

construction of types and attributes groups and their assignment respectively to

elements and attributes. Schematron enables reusability by defining abstract patterns

and rules and instantiating (with the ability to define parameter variables) them

several times in the document. RELAX NG takes reusability a little bit further,

allowing the definition of sets of any type of statements and reapply them to any

context in the schema.

Compactness

Compactness is the ability to build the most constraints possible using the less

available statements. Schematron produces very long and complex schemas due to the

pattern-based approach. Schematron should be avoided when enforcing of lexical and

syntactic constraints are required due to its non-structure approach. Schematron

should only be used when the other languages are incapable of enforcing a constraint.

WXS produces extensive schemas due to the leverage of the tree structure in a list of

element declarations and the added complexity of type construction. Type

construction in WXS requires an elaborate set of statements to define extensions and

restrictions on content making it very extensive. With WXS the more complex the

schema is the more extensive the schema becomes6. RELAX NG also produces very

compact schemas. This is achieved by the ability of RELAX NG to follow the natural

tree structure of the document combined with the huge versatility of the statements to

be applied in wider contexts. Another important feature is the ability of RELAX NG

to collect all types of statements and reapply them at any time and any context.

Although the DTD language also leverages the document tree structure (as for WXS),

it is able to produce very compact schemas given the universe of constraints possible

of being enforced. The reduced expression of this language and therefore, the few

statements available contributed to the compactness of the schema. The more

constraints we need to enforce more difficult becomes the task of building the

language primitive statements.

Complexity

Complexity is the level of knowledge required to the correct development of a

schema. The reduced expression of the DTD language and the straight forward

approach used in element and attribute declarations, make it very easy to understand.

6 A more detailed comparative analysis of the language vocabulary present in WXS and

RELAX NG is presented at: http://www.wyeast.net/compare.html

WXS is the most difficult language. Its approach to object oriented design makes it

difficult to use and understand. Although very powerful, the type construction is not

immediate for unskilled developers. The extension and restriction mechanisms are

also difficult to understand and require previous knowledge and experience before

using them, especially when dealing with attributes. An extended evaluation of the

complexity of this language and best practices for its usage are discussed in [14].

RELAX NG is a very simple language. Again its ability to apply the same statements

to many different contexts; reduced the schema vocabulary and therefore reducing the

knowledge needed to develop a schema. Another aspect of RELAX NG that

contributed to the reduced complexity of the schema is the ability of the language to

follow the document tree structure, making it easy to develop a schema only by

looking at the expected document. Some features and design characteristics of this

language are discussed in detail in [15]. Again the rule-based approach of Schematron

makes this language difficult to learn and even more difficult to understand the need

expression for the enforcing of a given constraint

Extensibility

Extensibility is a design principle to take into consideration the language future

growth. It is reflected in the ability of the schema language to add new features

(increments), be enhanced or customized, without disturbing the existing features.

Languages that use XML syntax for schema notation increase the ability to be

extended. This is achieved by the ability of XML to be annotated with elements and

attributes from other namespaces.

WXS provides a special element for this purpose (AppInfo), enabling the

composition with other schema languages, especially Schematron [16]. Although

RELAX NG does not provide specific elements or attributes to this purpose, it has an

open syntax predicting this requirement. Schematron as a XML syntax language also

allows schema extension. Nevertheless one of its main design principles was to be

combined with other existing schema languages and not to import. Some interesting

work in this area can be read in [17]. DTD has no mechanism for schema extension,

mainly because it was the first effort in schema languages design. At the time DTD

developers did not took this aspect in consideration because they did not predict the

existence of other schema languages.

Table 2. Languages ordered by their relative characteristics.

 most >> >> less

Expressivity Sch RNG WXS DTD

Reusability RNG Sch WXS DTD

Compactness DTD RNG WXS Sch

Complexity Sch WXS RNG DTD

Extensibility WXS RNG Sch -

Legend: Document Type Definition (DTD); W3C XML Schema (WXS); RELAX

NG (RNG); Schematron (Sch).

6 Other Related Work

This paper combines the work of many different papers. It follows some of the

guidelines present in [18] but introduces a different classification of the constraints

being supported in each schema language. The approach used in this paper was

oriented to the grammar used by the schema language to encode the schema

constraints. This approach was inspired in the work of [9] based on a taxonomy of

XML Schema Languages but introducing the rule-based grammar approach. Other

works like [19] presented a rapid overview of the state of art of schema languages.

7 Conclusions and Future Work

As a result of this work some valuable conclusions were reached to anyone willing

to formalize schemas for XML documents (some conclusions converge with the

concepts guiding the DSDL project [8]).

 The schema language should be chosen carefully in order to define the most

constraints possible using it. In this sense always:

o Use a tree grammar for the definition of lexical and syntactic constraints.

Consider always the most expressive tree grammar possible like restrained-

competition grammars (RELAX NG is a good choice). When dealing with

schemas requiring only the definition of simple vocabulary, consider the use

DTD (or any other tree grammar based language).

o Avoid using rule-based grammars as preferred schema language. Otherwise

the schema becomes very extensive and complex.

o Choose the schema language that adequately satisfies your datatype

constraints. Otherwise, additional constraints will be required to restrain

datatype values. Consider using a language that supports importing datatype

libraries (e.g. WXS Datatype Library) like RELAX NG.

 Consider using additional schema languages when the chosen schema language

does not support all the schema constraint requirements.

o Use rule-based grammars when no tree grammar is able to satisfy the needed

requirements. Otherwise the schema becomes very extensive and complex.

Schematron is a good candidate since it can easily be embed in other schema

languages and offers a great expressivity in defining schema constraints.

 Finally, in order to ensure that schemas remain simple and compact, always

remind to choose the most appropriate schema language statement even if it means

importing from other schema languages. WXS and RELAX NG offer a good

choice for importing language statements for specific constraints.

For future work, it would be interesting to study the problems that users frequently

face when developing schemas and provide possible solutions looking at some of the

existing schema languages.

References

1. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, John

Cowan. Extensible Markup Language (XML) 1.1 (Second Edition). W3C, September 2006.

See http://www.w3.org/TR/xml11/.

2. ISO 8879:1986 Information processing - Text and office systems - Standard Generalized

Markup Language (SGML)

3. Fallside, David C. and Walmsley, Priscilla, editors. XML Schema Part 0: Primer Second

Edition. W3C, October 2004. See http://www.w3.org/TR/xmlschema-0/.

4. Thompson, Henry S., Beech, David, Maloney, Murray, Mendelsohn, Noah, editors. XML

Schema Part 1: Structures Second Edition. W3C, October 2004. See

http://www.w3.org/TR/xmlschema-1/.

5. Biron, Paul V. and Malhotra, Ashok, editors. XML Schema Part 2: Datatypes Second

Edition. W3C, October 2004. See http://www.w3.org/TR/xmlschema-2/.

6. Clark, James and Mokoto, Murata. RELAX NG Specification. OASIS, December 2001. See

http://www.oasis-open.org/committees/relax-ng/spec.html.

7. Document Schema Definition Languages (DSDL) — Part 3: Rule-based validation –

Schematron. ISO/IEC 2004. See http://www.schematron.com/iso/dsdl-3-fdis.pdf.

8. ISO/IEC 19757-1. Document Schema Definition Languages (DSDL) – Part 1: Overview.

November 2004. See http://dsdl.org/0567.pdf.

9. Murata, Makoto, Lee, Dongwon, Mani, Murali. Taxonomy of XML Schema Languages

using Formal Language Theory. ACM Transactions on Internet Technology (TOIT),

Volume 5, Issue 4 (November 2005), pp. 660-704. See

http://doi.acm.org/10.1145/1111627.1111631.

10. Dodds, Leigh. Schemarama. XML.com, 7 February 2001. See

http://www.xml.com/pub/a/2001/02/07/schemarama.html.

11. Lewis, Amelia. Not My Type: Sizing Up W3C XML Schema Primitives, Julho 2002. See

http://www.xml.com/pub/a/2002/07/31/wxstypes.html.

12. Provost, Will. Beyond W3C XML Schema, Abril, 2002.

http://www.xml.com/pub/a/2002/04/10/beyondwxs.html.

13. Provost, Will. Normalizing XML, Part 1. Novembro 2002.

http://www.xml.com/pub/a/2002/11/13/normalizing.html.

14. Obasanjo, Dare. W3C XML Schema Design Patterns: Avoiding Complexity. Novembro,

2002. See http://www.xml.com/pub/a/2002/11/20/schemas.html.

15. Clark, James. The Design of RELAX NG. See

http://www.thaiopensource.com/relaxng/design.html.

16.Costello, Roger L. Extending XML Schemas. March 06, 2001. See

http://www.xfront.com/ExtendingSchemas.html.

17.Robertsson, Eddie. Combining Schematron with other XML Schema languages. Junho,

2002. See http://www.topologi.com/public/Schtrn_XSD/Paper.html.

18. Lee, Dongwon, Chu, Wesley W. Comparative Analysis of Six XML Schema Languages,

June 7, 2000. See http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.pdf.

19. Rick Jelliffe. The Current State of the Art of Schema Languages for XML. 2001. See

http://www.planetpublish.com/pdfs/RickJellif.

