Extending the L earning Object definition
to represent Programming Problems

2
José Paulo Ledklnd Ricardo Queirds

1
CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcec.fc.up.pt

2
CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract. The present generation of eLearning platformsesthe interchange
of learning objects standards. Nevertheless, farcigfized domains these
standards are insufficient to fully describe ak thssets, especially when they
are used as input for other elLearning services.adldress this issue we
extended an existing learning objects standartig¢garticular requirements of
a specialized domain, namely the automatic evalna®f programming
problems. The focus of this paper is the definitddprogramming problems as
learning objects. We introduce a new schema toesgmt metadata related to
automatic evaluation that cannot be convenientpresented using existing
standards, such as: the type of automatic evaluatiee requirements of the
evaluation engine; or the roles of different assettests cases, program
solutions, etc. This new schema is being used imt@noperable repository of
learning objects, called crimsonHex.

Keywords: eLearning, Learning Objects, Content Packagingroperability.

1 Introduction

The majority of the eLearning platforms availalday follow a component-oriented
architecture. These systems assemble a collectigareric tools - such as forums or
multiple choice quizzes - that are considered toubeful for all learning areas.
Despite their success, they have also been tafgetitwism: their tools are too
general and they are difficult to integrate witthert eLearning systems [1]. These
issues led to recent initiatives to adapt Servicered Architecture (SOA) [2] to
eLearning. Apart from the systems integration, oftr®blems arise related with the
standardization of eLearning content. The exisstandards are too generic and not
adequate to specific domains, such as the definitfgorogramming problems.

This paper focuses on a definition of programmingbfems as learning objects
(LO) adequate to the interoperability of serviaeshie area of automatic evaluation of
programming problems. This new definition represeziso a new application profile
for learning objects based on Instructional Managein$ystems (IMS) specifications
and extended to accommodate domain specific is3ins definition is being used in

a European research project called EduJudge, vetiih to integrate a collection of
problems created for programming contests into dfective educational
environment. The elLearning system resulting from BduJudge project includes
different types of services hence a precise dédimibf programming problems as
learning objects is essential to ensure interopl@sahmong them.

The remainder of this paper is organized as follddextion 2 traces the evolution
of LO standards with emphasis on schema langudgethe following section we
present a new application profile based on IMS ifipations to represent
programming problems. In this section we also ¢t#tai combination of two different
types of validation languages: grammar and ruletachema languages. Then, we
present a case study regarding the use of the pplication profile in crimsonHex, a
repository of specialized learning objects. Finall conclude with a summary of the
main contributions of this work and a perspectif/éuture research.

2 Stateof Art

The evolution of eLearning systems in the last tlexades was impressive. In
their first generation, eLearning systems were higesl for a specific learning
domain and had a monolithic architecture [1]. Gedlgu these systems evolved and
became domain-independent, featuring reusable thals can be effectively used
virtually in any elLearning course. The systems tiestch this level of maturity
usually follow a component-oriented architecturetider to facilitate tool integration.
An example of this type of system is the Learningrnislgement System (LMS) that
integrate several types of tools for delivering teoh and for recreating a learning
context (e.g. Moodle, Sakai).

The present generation values the interchange ashileg objects and learners'
information through the adoption of new standafdg brought content sharing and
interoperability to eLearning. Standards can bevei as "documented agreements
containing technical specifications or other preaisiteria to be used consistently as
guidelines to ensure that materials and servicediafor their purpose” [3]. In the
elLearning context, standards are generally devdlagth the purpose of ensuring
interoperability and reusability in systems. Insthbntext, several organizations [4, 5,
6] have develop specifications and standards itatsteyears [7]. These specifications
define, among many others, standards for elLearrdogtent [8, 9, 10] and
interoperability [11, 12].

As said before, current LO standards are quite nieaed not adequate to specific
domains, such as the definition of programming fois. The most widely used
standard for LO is the IMS Content Packaging (IMB)CThis content packaging
format uses an XML manifest file wrapped with othesources inside a zip file. The
manifest includes the IEEE Learning Object Metada@M) standard to describe the
learning resources included in the package. Howek®&M was not specifically
designed to accommodate the requirements of auieeluation of programming
problems. For instance, there is no way to askertdle of specific resources, such as
test cases or solutions. Fortunately, IMS CP wasgded to be straightforward to

extend, meeting the needs of a target user comyndhibugh the creation of
application profiles.

When applied to metadata the term Application Rrofienerally refers to "the
adaptation, constraint, and/or augmentation of tadaga scheme to suit the needs of
a particular community” [13]. A well know eLearniagplication profile is SCORM
[14] that extends IMS CP with more sophisticatequescing and Contents-to-LMS
communication.

The creation of application profiles aims to mea¢ heeds of the target user
community, aid integration and enhance interopétalbietween tools and services of
the community. The creation is based in one or robthe following approaches:

» Selection of a core sub-set of elements and fiieta the source schema;

« Addition of elements and/or fields (normally termextensions) to the source

schema, thus generating the derived schema;

e Substitution of a vocabulary with a new, or extahd®cabulary to reflect

terms in common usage within the target community;

« Description of the semantics and common usageeottihema as they are to

be applied across the community.

Following this extension philosophy, the IMS Gloh&arning Consortium (GLC)
upgraded the Question & Test Interoperability (Qgecification [10]. QTI describes
a data model for questions and test data and, frension 2, extends the LOM with
its own metadata vocabulary. QTI was designed foestjons with a set of pre-
defined answers, such as multiple choice, multiglgponse, fill-in-the-blanks and
short text questions. It supports also long textwaars but the specification of their
evaluation is outside the scope of the QTI. AltHolmng text answers could be used
to write the program's source code, there is no teagpecify how it should be
compiled and executed, which test data should bd aad how it should be graded.
For these reasons we consider that QTI is not adedor automatic evaluation of
programming exercises, although it may be suppddedake of compatibility with
some LMS. Recently, IMS GLC proposed the IMS Comnartridge [15] that
bundles the previous specifications and its maial o to organize and distribute
digital learning content.

All these standards are described by schema laeguagpst often using the XML
Schema Definition language (XSD). This languagercanme DTD limitations and
provided several advanced features, such as, fitigy dab build new types derived
from basic ones, manage relationships between elsmgsimilar to relational
databases) and combine elements from several sthema

In spite of its expressiveness, XSD lacks featwoedescribe constraints on the
XML document structure. For instance, there is naywo specify dependencies
between attributes, or to select the content mbdsked on the value of another
element or attribute. To address these issuesaesatema languages were proposed,
such as, RELAX NG [16] (based on TREX [17] and REX_A8]), DSD (Document
Structure Description) [19] and Schematron [20]e Bthematron language provides
a standard mechanism for making assertions abeutaldity of an XML document
using XPath expressions and can be easily combwigd W3C XML Schema
documents.

3 Application profile

Based on the previous approaches to create a nearmghg application profile, we
defined programming problems as learning objects eltending the IMS CP
specification. An IMS CP learning object assembiksources and metadata into a
distribution medium, in our case a file archive Zip format, with its content
described in a file namednmsmani f est. xm in the root level. The manifest
contains four sections: metadata, organizationspurees and sub-manifests. The
main sections are metadata, which includes a qori of the package, and
resources, containing a list of references to ofites in the archive (resources), as
well as dependencies among them.

Metadata information in the manifest file usualblidws the IEEE LOM schema,
although other schemata can be used. These metddatants can be inserted in any
section of the IMS CP manifest. In our case, théadetta that cannot be conveniently
represented using LOM is encoded in elements afva schema — EduJudge Meta-
Data (EJ MD) - and included only in the metadataisa of the IMS CP. This section
is the proper place to describe relationships am@sgurces, as those needed for
automatic evaluation and lacking in the IEEE LOMeTcompound schema can be
viewed as a new application profile that combinestadata elements selected from
several schemata. The structure of the archivéngets distribution medium and
containing the programming problem as a LO, is degpiiin Fig. 1.

|EEE LOM complies
schema resources

resource

Tesource

resource

assets
metadata

imsmanifest.xml

Fig. 1. Structure of a programming problem as a learnivjgad.

The archive contains several files representechéndiagram as grey rectangles.
The manifest is an XML file and its elements' stuoe is represented by white
rectangles. Different elements of the manifest dgmpith different schemata
packaged in the same archive, as represented latied arrows: the manifest root
element complies with the IMS CP schema; elemeantdhé metadata section may
comply either with IEEE LOM or with EJ MD; metadagéements within resources

may comply either with IEEE LOM or IMS QTI. Resoarelements in the manifest
file reference assets packaged in the archiveegaresented in solid arrows.

The IMS CP specification is defined by a W3C XMLh8&ma Definition (XSD).
The schema describes which elements may existeiddicument manifest and how
those elements may be structured. Instance docsnoamt be validated using this
XSD schema. In our application profile we used &pts from several schemata and
namespaces were used to avoid name clashes. IEXh®ID specification, the
namespaces, filenames and namespace prefixes ofikdthinces are as follows:

Tablel. Schemata in the new Application Profile.

Specification Namespace Filename

IMS CP http://www.imsglobal.org/xsd/imscp_v1pl imselpl.xsd

IEEE LOM http://www.imsglobal.org/xsd/imsmd_v1p2 dmd_v1p2.xsd
IMS QTI http://www.imsglobal.org/xsd/imsqti_vipl dqti_v1pl.xsd
EJ MD http://www.edujudge.eu/ejmd_v2 ejmd_v2.xsd

These references will be used for on-line validatim conform to IMS CP Best
Practice Document to prefer online references on the IMS websitdhamathan static
XSD files in the LO package, as they will be thestnap-to-date specifications.

3.1 The EduJudge schema

The corner stone of this definition of programmprgblems as learning objects is
automatic evaluation. Consequently, this definitiassumes the existence of a
component responsible for evaluating learnershgite based on the learning object
and producing a result. Moreover, it needs alsaageume an evaluation model
supported by the evaluator. After considering ssveossible alternatives we decided
on a single and simple evaluation model followihgee steps:

1. the evaluator receives:
a. areference to the learning object with a programgngiroblem;
b. an attempt to solve it - a single file, a programam archive
containing files of different types (e.g. JAR, WAR)
c. areference to the learner submitting the attempt.
2. the evaluator processes this data as follows:
a. loads the learning object from a repository ustegéference;
b. uses the assets available in the LO (static tgstserated tests, unit
tests, etc.) according to their role;
c. produces a result (correction , classification &etlback) that may
depend on the learner's reference;
d. stores the result for future incremental feedbadké same learner.
3. the evaluator returns the result immediately ohwitshort delay.

Assuming this simple model, the learning objectadata simply assigns a role to
each asset. It is the responsibility of the evadmatomponent to use each asset
appropriately according to its role.

To represent programming problems as learning thjeable to be evaluated
according to model we just described, we extentiednetadata of the IMS CP, as
foreseen in this specification. New metadata cainberted in several points of the
manifest. Based on the available choices we dectdegdlace different types of
metadata in the following extension points:

« Domain metadata (EJ MD), related to the automatic evaluation, MSI CP

mani f est / met adat a element;

* Resource metadata (IEEE LOM), independent from their use in automati
evaluation, within the IMS CPrani f est/resource/fil e/ net adat a
elements (without any domain metadata) and linkgdthe domain data
through IDREF attributes.

The domain metadata shown in Figure 2 is dividethiee categories: the general
category describes generic metadata and recomniemstathe presentation category
describes metadata on resources that are prederiteg learner (e.g. description and
skeleton resources); the evaluation category dessthe metadata on resources used
to evaluate the learner's attempts and providebissd

(CT) metadataType
(CT) generalType
[E | general : generalType "‘E ll hints : hintsType

(CT) presentationType

[(E | presentation : presentationType -Fj Lr [[E]] description : resourceType

[£ | skeleton : resourceType

[E | metadata : metadataT
b (CT) evaluationType
[E] tests : testsType
+ff ;.- [E] correctors: correctorsType
[[£] evaluation : evaluationType | e
(A | evaluationModel : string

(A | evaluationModelVersion : integer

Fig. 2. The domain metadata of the EJ MD specification

The IMS CP resources section is a collection obuese elements, each one
grouping several files. In order to link the EJ MDPmain metadata described above,
with the related resources, we used the IDREF XMhe®na type in the domain
metadata to reference theesource elements, more precisely, the IMS CP
i denti fi er attribute, as represented in Fig. 3.

€D resourceType: <None>

resource : IDREF
€D presentationType "5

EJ MD o1 [E] skeleton: resourceType

(CT) resourceType

a1 [E <Ref> : metadata
o« [E] <Ref> :file

0.F [E] <Ref> :dependency
<Any>
[E] resource: resourceType

(@G <Ref= : attr.identifier.req

identifier : ID

(@3] <Ref= : attr.resourcetype.req

IMS CP type : string

Fig. 3. The binding model of EJ MD domain metadata andfe CP resources

3.2 Schematron processing

Despite the expressiveness of XML Schema, thersareral situations where it is
not possible to validate a document with only tldaeaguage. For example, the
following cases cannot be validating using an XMih&ma:
e general type is included only in theanifest/ netadata element
(because of the multiple extension points providgthe IMS CP);

+ IDREF type points to a file resource with the aggprate type;

« value of the msnd: mi ni mumver si on element is less than the value of the
i msd: maxi munver si on element.

To check this type of constraints we cannot use X8thema. There are, at least,
three options: combine with others schema langyagete code in a programming
language to express the additional constraints;ams&XSLT/XPath stylesheet. We
will use the former, because we want to maintaie folutions based in XML
technologies and, if possible, in a single schemaudhent. There are several
alternative schema languages, such as RELAX, TREKSchematron. In this case,
we need to use a rule-based validation languagedier to find certain patterns in the
XML document. A good candidate to this “second lexfevalidation” is Schematron.
The last constraint enumerated could be validai#futhis rule as a separate file:

<schema xm ns="http://ww. ascc. net/xm /schematron" >
<pattern name="version validation">
<rule context="//inmsnd: requirenment">
<assert test="imsnd: m ni munmversion > i msnd: maxi nunmversi on" >
ERROR
</ assert>
</rul e>
</ pattern>
</ schema>

Schematron validation can be used in conjunctidh & XML schema validation
using two approaches:

e as separate files (using pipeline validation lamgsd21,22]);

e as aunique file (embedding Schematron rules irKtfie Schema).

To simplify the file version management we decidedthe second option and
used Schematron rules embedded within #ppi nf o elements in the XSD
document. However, a W3C XML Schema processor awésvalidate constraints
expressed by the embedded Schematron rules. Thesl tnebe extracted from the
source schema and concatenated into a new Schendgdonment. To address this
issue we created a stylesheebclienat ron- Generator.xsl) to extract
embedded Schematron rules from a W3C XML Schemardent and merge them
into a complete schema. This approach was usedleifsson work [23] and can be
summarized by Fig. 4.

Extractor stylesheet XML instance document
[Schematron-Generator.xsl) [imsmanifest.xml)

Schematron schema
[Validator.sch) Schematron report

. 5 Schematron . Merged repart
rocessor

W3C XML Schema W3C XML Schema

with Schematron rules Processor

[ejmd_v2.xsd)

XMLinstance document
[imsmanifest.xml)

W3C XML Schema
report

Fig. 4. Validation of XML files by a W3C XML Schema withcBematron rules.

Since Schematron rules are built using XPath andTXf@nctions, the Schematron
processor depicted in the previous figure is based XSLT processor.

Meta-stylesheet XML instance document
(preprocessor.xsl) ([imsmanifest.xml)

Schematron schema Validating XSLT
(Validator.sch) stylesheet

Schematron report

Schematron Processor

Fig. 5. Schematron processing.

To perform this validation we used an implementatf a Java API for the
Schematron language [24] that organizes the Schemptocessing in two steps, as
shown in Fig. 5:

e The Schematron schema is transformed into a valgla®SLT stylesheet by a

meta-stylesheet provided by the API.

e The validating stylesheet is then used on the XkHtance document and the

result will be a report based on rules/assertidrikedSchematron schema.

With this approach we can benefit from the combamabf these two powerful
validation languages and many of the constrairdsgheviously had to be checked in
the application code can now be abstracted to thensa. However it should be
noticed that in time critical applications the dwead of processing the embedded
Schematron rules may be unaffordable.

4 Case Study

In this section we describe the integration of pheposed programming problem
definition in a specialized and interoperable répog of LO named crimsonHex.
The crimsonHex repository is being used in a Eusopessearch project called
EduJudge that aims to open Valladolid on-line juélggp://uva.onlinejudge.org/) to
secondary and higher education, benefiting from dtsmsiderable collection of
programming problems from international and worldevACM-ICPC competitions.

The integration of the EduJudge schema in crimsanitel the feedback from
other partners in the project were crucial to eatduhe usefulness of the proposed
IMS application profile. In the remainder of thigction we make a succinct
description of the repository with emphasis on Xkthrage and validation. Details
on the implementation of crimsonHex can be fouséwhere [25].

4.1 Repository components

In the design of crimsonHex we set some initialuisgments, in particular, to be
simple and efficient. Simplicity is the best way pwomote the reliability and
efficiency of the repository. In fact, the core oens of the repository are
uploading and downloading LO - ZIP archives - whiale inherently simple
operations that can be implemented almost direntlr the transport protocol. Other
features may need a more elaborate implementatibndd not require the same
reliability and efficiency of the core features. eTlarchitecture of crimsonHex
repository is divided in three main components:

» the Core exposes the main features of the repository, bottexternal
services, such as the LMS and the Evaluator Engamg to internal
components - the Web Manager and the Importer;

» theWeb Manager allows the creation, revision, , uploading/downliogdof
LOs and related metadata, enforcing compliance wibntrolled
vocabularies;

» thelmporter populates the repository with existing legacy répoies.

42 XML Storage

Searching LOs in the repository is based on quenetheir XML manifests. Since
manifests are XML documents with complex schematguid particular attention to
databases systems with XML support: XML enabledtiehal databases and Native
XML Databases (NXD).

XML enabled relational databases are traditionaltalsmses with XML
import/export features. They do not store integndihta in XML format hence they
do not support querying using XQuery. Since queiteshis standard are a DRI
recommendation this type of storage is not a vafiion. In contrast, NXD uses the
XML document as fundamental unit of (logical) sgegamaking it more suitable for
data schemata difficult to fit in the relational deb Moreover, using XML
documents as storage units enables the followangdstrds:

e XPath for simple queries on document or collectiohdocuments;

e XQuery for queries requiring transformational sohfing;

e SOAP, REST, WebDAV, XmIRpc and Atom for applicatioterface;

* XML:DB API (or XAPI) as a standard interface to ass XML datastores.
* XSLT to transform documents or query-results rg&tefrom the database.

We analysed several open source NXD, including SEDBIZONE, XIndice and
eXist, Only eXist implements the complete list betfeatures enumerated above,
which led us to select it as the storage compopnémtrimsonHex. It has also two
important features [26] worth mentioning: suppat tollections, to structure the
database in groups of related documents and autonmatexes to speed up the
database access

4.3 Validation levels

The crimsonHex is a repository of specialized legymobjects. To support this multi
typed content the repository must have a flexib@@ Validation feature. The eXist
NXD supports implicit validation on insertion of XMdocuments in the database but
this feature could not be used for several reasoBsare not XML documents (are
ZIP files containing an XML manifest); manifest ig@tion may involve many XSD

files that are not efficiently handled by eXist;damanifest validation may combine
XSD and Schematron validation and this last isfaldy supported by eXist.

All LOs stored in crimsonHex must comply with tHd3 Package Conformance
that specifies it structure and content. This stamdilso requires the XSD validation
of their manifests. For particular domains it issgible to configure specialized
validations in crimsonHex by supplying a Java clasgplementing a specific
interface. These validations extend those of th& Rackage Conformance and may
introduce new schemata, even using different typéniion languages, such as
Schematron.

Validations are configured per collection of documse Thus, different types of
specialized LO may coexist in a single instancermhsonHex. As mentioned before,
IMS CP main schema imports many other schematag(th@n 30) that according to
the IMS Package Conformance must be downloaded ftben Internet. This
requirement has a huge impact on the performanc¢hefsubmit function. To

accelerate this function we implemented a cacheely stored schema has a time to
live of 1 hour. Outdated schemata are reloaded fitweir original Internet location
using a conditional HTTP request that downloadmiy if it has effectively changed.

5 Conclusions

In this paper we described the definition of prognsing problems as learning
objects. The main contribution of this work is #wension of an IMS standard to the
particular requirements of a specialized domainhe futomatic evaluation of
programming problems. Although we focused on théormaatic evaluation of
programming problems, we think that the descriljggt@ach can be adapted to other
learning domains. This new application profile isifg used in crimsonHex, an
interoperable repository of learning objects.

In its current status the EduJudge Metadata idablaifor test and download at
the following URL http://wwv. dcc. fc. up. pt/ schemaDoc. Our future
work will be to adapt the schema to support newuateon models, for instance,
programming problems where the evaluator aggregategams submitted by two or
more learners.

Acknowledgments. This work is part of the project entitled “Integry Online
Judge into effective e-learning”, with project nuenbl135221-LLP-1-2007-1-ES-
KA3-KA3MP. This project has been funded with sugpénom the European
Commission. This communication reflects the viewsdyoof the author, and the
Commission cannot be held responsible for any ubehvmay be made of the
information contained therein.

References

1. Dagger, D., O'Connor, A., Lawless, S., Walsh, E.d&/a/.: Service Oriented eLearning

Platforms: From Monolithic Systems to Flexible Seeg (2007)

Krafzig, D., Banke, K., Slama, D. Enterprise SOAn&m-Oriented Architecture Best

Practices. 1.ed. Estados Unidos da América: Peeht#dl, 2004. ISBN 0131465759

Bryden, A.: Open and Global Standards for Achiexangnclusive Information Society.

IMS Global Learning Consortium. URbttp://www.imsglobal.org

IEEE Learning Technology Standards Committee. URtp://ieeeltsc.org

ISO/IEC- International Organization for Standardiza.

URL: http://standards.iso.org/ittf/PubliclyAvailable Sthands/index.html

7. Friesen, N.: Interoperabilty and Learning Object#An Overview of E-
Learning Standardization". Interdisciplinary JourohKnowledge and Learning Objects.
2005.

8. IMS-CP — IMS Content Packaging, Information ModelsBRractice and Implementation
Guide, Version 1.1.3 Final Specification IMS Glolaarning Consortium Inc., URL:
http://www.imsglobal.org/content/packaging

N

ouksw

10.

11.

12.

13.

14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

26.

IMS-Metadata - IMS MetaData. Information Model, Bé&tactice and Implementation
Guide, Version 1.2.1 Final Specification IMS Gloldaarning Consortium Inc., URL:
http://www.imsglobal.org/metadata

IMS-QTI - IMS Question and Test Interoperabilitpfdrmation Model, Best Practice and
Implementation Guide, Version 1.2.1 Final Spectfma IMS Global Learning
Consortium Inc., URL:http://www.imsglobal.org/question/index.html

IMS DRI - IMS Digital Repositories InteroperabilityGore Functions Information Model,
URL: http://www.imsglobal.org/digitalrepositories/driv@fimsdri_infov1p0.html

Simon, B., Massart, D., van Assche, F., TernierD8vyal, E., Brantner, S., Olmedilla, D.,
& Miklos, Z. (2005). A Simple Query Interface fonteroperable Learning Repositories.
In Proceedings of the WWW 2005 Conference, retdewdarch 16, 2006 from
http://nm.wu-wien.ac.at/e-learning/interoperabilitww2005-workshop-sqi-2005-04-
14.pdf

IMS Application Profile Guidelines Overview, Part-IManagement Overview, Version
1.0. URL:http://www.imsglobal.org/ap/apvlpO/imsap_oviewvyl.

ADL SCORM Overview. URLhttp://www.adInet.gov/Technologies/scorm

IMS Common Cartridge Profile, Version 1.0 Final Sfeation. URL:
http://www.imsglobal.org/cc/ccvlpO/imscc_profilevllLptml

Clark, J, Murata, M.: RELAX NG Specification, OASISo@mittee Specification,
December 200http://relaxng.org/spec-20011203.html

Clark, J.: TREX - Tree Regular Expressions for XMLair®pen Source Software Center,
2001, http://www.thaiopensource.com/trex/

Murata, M.: RELAX (Regular Language description ®¥ML). INSTAC (Information
Technology Research and Standardization Center), 28@1//www.xml.gr.jp/relax/
Moller, A Document Structure Description 2.0, BRICS, 2002,
http://www.brics.dk/DSD/dsd2.html

The Schematron, An XML Structure Validation Langeiagsing Patterns in Trees,
http://www.ascc.net/xml/resource/schematron/schemdttml

Document Schema Definition Languages (DSDL), Waykdraft — ISO/IEC 2004. URL:
http://www.dsdl.org/

Jelliffe, R.: Schemachine: A framework for modulafidation of XML documents, 2002.
Robertsson, E.: Combining Schematron with other XMhe3na languages, 2002.
Hovhannisian, A., Becker, 0O.: JAVA APl for Schematro URL:
http://www2.informatik.hu-berlin.de/~obecker/SchernaAPI/, 2001.

Leal, J.P., Queirds, R.: CrimsonHex: a Service Oei@nRepository of Specialised
Learning Objects. In: ICEIS 2009: 11th InternatibnConference on Enterprise
Information Systems, Milan (2009)

Meier, W.: eXist: An Open Source Native XML Databasn: NODe 2002 Web and
Database-Related Workshops, (2002)

