
XML Processing and Logic Programming

Jorge Coelho1 and Mário Florido2

1 Instituto Superior de Engenharia do Porto & LIACC
Porto, Portugal

2 University of Porto, DCC-FC & LIACC
Porto, Portugal

{jcoelho,amf}@ncc.up.pt

Abstract. In this paper we describe a constraint solving module which
we call CLP(Flex), for dealing with the unification of terms with flexi-
ble arity function symbols. This approach results in a flexible and high
declarative model for XML processing.

Keywords: XML Processing Languages, Logic Programming, Constraint
Logic Programming

1 Introduction

XML is a notation for describing trees with an arbitrary finite number of leaf
nodes. Thus a constraint programming language dealing with terms where func-
tion symbols have an arbitrary finite arity should lead to an elegant and declar-
ative way of processing XML.

In this paper we describe a constraint logic programming language, CLP(Flex),
similar in spirit to mainstream CLP languages but specialized to the domain of
XML processing. Its novel features are the use of flexible arity function symbols
and a corresponding mechanism for a non-standard unification in a theory with
flexible arity symbols and variables which can be instantiated by an arbitrary
finite sequence of terms. We translate XML documents to terms and use the new
unification to process parts of these terms.

Unification with flexible arity symbols is no new notion. An unification al-
gorithm for these terms was defined in [18] where it was used as a Mathematica
package incorporated in the Theorema system (see [5]). Here we changed the al-
gorithm presented in [18] to give the solutions incrementally, an essential feature
to use it in a non-deterministic backtracking-based programming language such
as Prolog. The main contributions of this paper are the presentation of the im-
plementation and use of a constraint programming module, based on unification
of terms with function symbols of flexible arity, as a highly declarative model for
XML processing. Note that the work described in this paper was first presented
in a previous paper from the authors ([8]).

This article focuses on language design, shows its adequacy to write applica-
tions that handle, transform and query XML documents, and sketches solutions
to implementation issues. A distribution of our language can be found in:



http://www.ncc.up.pt/xcentric/

We assume that the reader is familiar with logic programming ([19]) and
CLP ([16, 15]), and knows the fundamental features of XML ([25]).

2 Related Work

Mainstream languages for XML processing such as XSLT ([26]), XDuce ([13]),
CDuce ([1]) and Xtatic ([27]) rely on the notion of trees with an arbitrary number
of leaf nodes to abstract XML documents. However these languages are based on
functional programming and thus the key feature here is pattern matching, not
unification. The main motivation of our work was to extend unification for XML
processing, such as the previous functional based languages extended pattern
matching. Constraints revealed to be the natural solution to our problem.

Languages with flexible arity symbols have been used in various areas: Xcerpt
([3]) is a query and transformation language for XML which also used terms with
flexible arity function symbols as an abstraction of XML documents. It used a
special notion of term (called query terms) as patterns specifying selection of
XML terms much like Prolog goal atoms. The underlying mechanism of the
query process was simulation unification ([4]), used for solving inequations of
the form q ≤ t where q is a query term and t a term representing XML data.
This framework was technically quite different from ours, being more directed
to query languages and less to XML processing. The Knowledge Interchange
Format KIF ([12]) and the tool Ontolingua [11] extend first order logic with
variable arity function symbols and apply it to knowledge management. Feature
terms [24] can also be used to denote terms with flexible arity and have been
used in logic programming, unification grammars and knowledge representation.
Unification for flexible terms has as particular instances previous work on word
unification ([14, 23]), equations over lists of atoms with a concatenation operator
([9]) and equations over free semigroups ([20]). Kutsia ([18]) defined a procedure
for unification with sequence variables and flexible arity symbols applied to an
extension of Mathematica for mathematical proving ([5]). From all the previous
frameworks we followed the work of Kutsia because it is the one that fits better
in our initial goal, which was to define a highly declarative language for XML
processing based on an extension of standard unification to denote the same
objects denoted by XML: trees with an arbitrary number of leafs. Although our
algorithm is based on this previous one it has some differences motivated by its
use as a constraint solving method in a CLP package:

– Kutsia algorithm gave the whole set of solutions to an equality problem
as output. We changed that point accordingly to the standard backtracking
model of Prolog. We give as output one answer substitution and subsequent
calls to the same query will result in different answer substitutions computed
by backtracking. When every solution is computed the query fails indicating
that there are no more solutions.



– a direct consequence of the previous point is that our implementation deals
with infinite sets of solutions (see example 46). It simply gives all solutions
by backtracking.

– Kutsia algorithm was a new definition of unification for the case of terms
with flexible arity symbols. Our implementation transforms the initial set of
constraints into a different (larger) set of equalities solved by standard uni-
fication and uses standard Prolog unification for propagating substitutions.

Finally we should refer that the use of standard terms (with fixed arity function
symbols) to denote XML documents was made before in several systems. For
example Pillow ([22]) used a low level representation of XML where the leaf
nodes in the XML trees were represented by lists of nodes and Prolog standard
unification was used for processing. In [2] and [7] XML was represented directly
by terms of fixed arity. A last reference to some query languages for XML (such
as XPathLog [21]) where Prolog style variables are used as an extension to XPath
in a query language for XML.

3 Terms with Flexible Arity Symbols and Sequence
Variables

3.1 Constraint Logic Programming

Constraint Logic Programming (CLP) [16] is the name given to a class of lan-
guages based on the paradigm of rule-based constraint programming. Each differ-
ent language is obtained by specifying the domain of discourse and the functions
and relations on the particular domain. This framework extends the logic pro-
gramming framework because it extends the Herbrand universe, the notion of
unification and the notion of equation, accordingly to the new computational
domains. There are many examples of CLP languages, such as, Prolog III [10]
which employs equations and disequations over rational trees and a boolean alge-
bra, CLP(R), [17] which has linear arithmetic constraints over the real numbers
and ECLiPSe, [6], that computes over several domains: a Boolean algebra, linear
arithmetic over the rational numbers, constraints over finite domains and finite
sets. Prolog itself can be viewed as a CLP language where constraints are equa-
tions over an algebra of finite trees. A complete description of the major trends
of the fundamental concepts about CLP can be found in [16].

3.2 CLP(Flex)

The idea behind CLP(Flex) is to extend Prolog with terms with flexible ar-
ity symbols and sequence variables. We now describe the syntax of CLP(Flex)
programs and their intuitive semantics.

In CLP(Flex) we extend the domain of discourse of Prolog (trees over unin-
terpreted functors) with finite sequences of trees.

Definition 31 A sequence t̃, is defined as follows:



– ε is the empty sequence.
– t1, t̃ is a sequence if t1 is a term and t̃ is a sequence

Example 31 Given the terms f(a), b and X, then t̃ = f(a), b,X is a sequence.

Equality is the only relation between trees. Equality between trees is defined in
the standard way: two trees are equal if and only if their root functor are the
same and their corresponding subtrees, if any, are equal.

We now proceed with the syntactic formalization of CLP(Flex), by extending
the standard notion of Prolog term with flexible arity function symbols and
sequence variables.

We consider an alphabet consisting of the following sets: the set of standard
variables, the set of sequence variables (variables are denoted by upper case
letters), the set of constants (denoted by lower case letters), the set of fixed
arity function symbols and the set of flexible arity function symbols.

Definition 32 The set of terms over the previous alphabet is the smallest set
that satisfies the following conditions:

1. Constants, standard variables and sequence variables are terms.
2. If f is a flexible arity function symbol and t1, . . . , tn (n ≥ 0) are terms, then

f(t1, . . . , tn) is a term.
3. If f is a fixed arity function symbol with arity n, n ≥ 0 and t1, . . . , tn are

terms such that for all 1 ≤ i ≤ n, ti does not contain sequence variables as
subterms, then f(t1, . . . , tn) is a term.

Terms of the form f(t1, . . . , tn) where f is a function symbol and t1, . . . , tn are
terms are called compound terms.

Definition 33 If t1 and t2 are terms then t1 = t2 (standard Prolog unification)
and t1 = ∗ = t2 (unification of terms with flexible arity symbols) are constraints.

A constraint t1 = ∗ = t2 or t1 = t2 is solvable if and only if there is an assign-
ment of sequences or ground terms, respectively, to variables therein such that
the constraint evaluates to true, i.e. such that after that assignment the terms
become equal.

Remark 31 In what follows, to avoid further formality, we shall assume that the
domain of interpretation of variables is predetermined by the context where they
occur. Variables occurring in a constraint of the form t1 = ∗ = t2 are interpreted
in the domain of sequences of trees, otherwise they are standard Prolog variables.
In CLP(Flex) programs, therefore, each predicate symbol, functor and variable
is used in a consistent way with respect to its domain of interpretation.

CLP(Flex) programs have a syntax similar to Prolog extended with the new
constraint = ∗ =. The operational model of CLP(Flex) is the same of Prolog.



3.3 Constraint Solving

Constraints of the form t1 = ∗ = t2 are solved by a non-standard unification that
calculates the corresponding minimal complete set of unifiers. This non-standard
unification is based on Kutsia algorithm [18]. As motivation we present some
examples of unification:

Example 32 Given the terms f(X, b, Y ) and f(a, b, b, b) where X and Y are
sequence variables, f(X, b, Y ) = ∗ = f(a, b, b, b) gives three results:

1. X = a and Y = b, b
2. X = a, b and Y = b
3. X = a, b, b and Y = ε

Example 33 Given the terms f(b, X) and f(Y, d) where X and Y are sequence
variables, f(b, X) = ∗ = f(Y, d) gives two possible solutions:

1. X = d and Y = b
2. X = N, d and Y = b, N where N is a new sequence variable.

Note that this non-standard unification is conservative with respect to stan-
dard unification: in the last example the first solution corresponds to the use of
standard unification.

4 XML Processing in CLP(Flex)

In CLP(Flex) there are some auxiliary predicates for XML processing. Through
the following examples we will use the builtin predicates xml2pro and pro2xml
which respectively convert XML files into terms and vice-versa. We will also use
the predicate newdoc(Root,Args,Doc) where Doc is a term with functor Root and
arguments Args (this predicate is similar to =.. in Prolog).

4.1 XML as Terms with Flexible Arity Symbols

An XML document is translated to a term with flexible arity function symbol.
This term has a main functor (the root tag) and zero or more arguments. Al-
though our actual implementation translates attributes to a list of pairs, since
attributes do not play a relevant role in this work we will omit them in the
examples, for the sake of simplicity. Consider the simple XML file presented
bellow:

<addressbook>

<record>

<name>John</name>

<address>New York</address>

<email>john.ny@mailserver.com</email>

</record>

...

</addressbook>



The equivalent term is:

addressbook(record(

name(’John’),

address(’New York’),

email(’john.ny@mailserver.com’)),

...)

4.2 Using Constraints in CLP(Flex)

One application of CLP(Flex) constraint solving is XML processing. With non-
standard unification it is easy to handle parts of XML files. In this particular
case, parts of terms representing XML documents.

Example 41 Address Book translation. In this example we use the address
book document of the previous example. In this address book we have sometimes
records with a phone tag. We want to build a new XML document without this
tag. Thus, we need to get all the records and ignore their phone tag (if they have
one). This can be done by the following program (this example is similar to one
presented in XDuce [13]):

translate:-

xml2pro(’addressbook.xml’,’addressbook.dtd’,Xml),

process(Xml,NewXml),

pro2xml(NewXml,’addressbook2.xml’).

process(A,NewA):-

findall(Record,records_without_phone(A,Record),LRecords),

newdoc(addressbook,LRecords,NewA).

records_without_phone(A1,A2):-

A1 =*= addressbook(_,record(name(N),address(A),_,email(E)),_),

A2 = record(name(N),address(A),email(E)).

Predicate translate/0 first translates the file “addressbook.xml” into a CLP(Flex)
term, which is processed by process/2, giving rise to a new CLP(Flex) term and
then to the new document “addressbook2.xml”. This last file contains the address
records without the phone tag.

Example 42 Book Stores. In this example we have two XML documents with
a catalogue of books in each (“bookstore1.xml” and “bookstore2.xml”). These
catalogues refer to two different book stores. Both “bookstore1.xml” and “book-
store2.xml” have the same DTD and may have similar books. A sample of one
of this XML documents can be:

<?xml version="1.0" encoding="UTF-8"?>

<catalog>

<book number="1">

<name>Art of Computer Programming</name>

<author>Donald Knuth</author>



<price>140</price>

<year>1998</year>

</book>

...

<book number="500">

<name>Haskell:The Craft of Functional Programming (2nd Edition)</name>

<author>Simon Thompson</author>

<price>41</price>

<year>1999</year>

</book>

</catalog>

1. To check which books are cheaper at bookstore 1 we have the following pro-
gram:

best_prices(B):-

xml2pro(’bookstore1.xml’,’bookstore1.dtd’,T1),

xml2pro(’bookstore2.xml’,’bookstore2.dtd’,T2),

process(T1,T2,B).

process(Books1,Books2,[N,A]):-

Books1 =*= catalog(_,book(name(N),author(A),price(P1),year(Y)),_),

Books2 =*= catalog(_,book(name(N),author(A),price(P2),year(Y)),_),

atom2number(P1,P1f),

atom2number(P2,P2f),

P1f < P2f.

The predicate best prices/1 returns the cheaper books at “bookstore1.xml”,
one by one, by backtracking.

2. To get all the books from one author, the author of a book or all the pairs
author/book, we have the following code:

books_from(Author,Book):-

xml2pro(’bookstore1.xml’,’bookstore1.dtd’,Xml),

process2(Xml,Author,Book).

process2(Xml,Author,Book):-

Xml =*= catalog(_,book((name(Book),author(Author),_)),_).

Here books from/2 retrieves, by backtracking, every Author/Book names from
file “bookstore1.xml”.

The previous programs are rather simple. This stresses the highly declarative
nature of CLP(Flex) when used for XML processing.

4.3 The Unification Algorithm

The unification algorithm, as presented in [18], consists of two main steps, Pro-
jection and Transformation. The first step, Projection is where some variables
are erased from the sequence. This is needed to obtain solutions where those



variables are instantiated by the empty sequence. The second step, Transforma-
tion is defined by a set of rules where the non-standard unification is translated
to standard Prolog unification.

Definition 41 Given terms T1 and T2, let V be the set of variables of T1 and
T2 and A be a subset of V . Projection eliminates all variables of A in T1 and
T2.

Example 43 Let T1 = f(b, Y, f(X)) and T2 = f(X, f(b, Y )). In the projection
step we obtain the following cases (corresponding to A = {}, A = {X}, A = {Y }
and A = {X, Y }):

– T1 = f(b, Y, f(X)), T2 = f(X, f(b, Y ))
– T1 = f(b, Y, f), T2 = f(f(b, Y ))
– T1 = f(b, f(X)), T2 = f(X, f(b))
– T1 = f(b, f), T2 = f(f(b))

Our version of Kutsia algorithm uses a special kind of terms, here called, sequence
terms for representing sequences of arguments.

Definition 42 A sequence term, t̄ is defined as follows:

– empty is a sequence term.
– seq(t, s̄) is a sequence term if t is a term and s̄ is a sequence term.

Definition 43 A sequence term in normal form is defined as:

– empty is in normal form
– seq(t1, t2) is in normal form if t1 is not of the form seq(t3, t4) and t2 is in

normal form.

Example 44 Given the function symbol f , the variable X and the constants a
and b:

seq(f(seq(a, empty)), seq(b, seq(X, empty)))

is a sequence term in normal form.

Note that sequence terms are lists and sequence terms in normal form are flat
lists. We introduced this different notation because sequence terms are going
to play a key role in our implementation of the algorithm and it is important
to distinguish them from standard Prolog lists. Sequence terms in normal form
correspond trivially to the definition of sequence presented in definition 31. In
fact sequence terms in normal form are an implementation of this definition.
Thus, in our implementation, a term f(t1, t2, . . . , tn), where f has flexible ar-
ity, is internally represented as f(seq(t1,seq(t2, . . . ,seq(tn, empty) . . .)), that is,
arguments of functions of flexible arity are always represented as elements of a
sequence term.

We now define a normalization function to reduce sequence terms to their
normal form.



Definition 44 Given the sequence terms t̄1 and t̄2, we define sequence term
concatenation as t̄1 + +t̄2, where the ++ operator is defined as follows:

empty ++ t̄ = t̄
seq(t1,t̄2) ++ t̄3 = seq(t1,t̄2++t̄3)

Definition 45 Given a sequence term, we define sequence term normalization
as:

normalize(empty) = empty
normalize(t) = seq(t,empty), if t is a constant or variable.
normalize(t) = seq(f(normalize(t1)),empty), if t = f(t1).
normalize(seq(t1,t̄)) = normalize(t1) ++ normalize(t̄)

Proposition 41 The normalization procedure always terminates yielding a se-
quence in normal form.

Transformation rules are defined by the rewrite system presented in figure
1. We consider that upper case letters (X,Y ,. . . ) stand for sequence variables,
lower case letters (s,t,. . . ) for terms and overlined lower case letters (t̄, s̄) for
sequence terms. These rules implement Kutsia algorithm applied to sequence
terms by using standard Prolog unification. Note that rules 6, 7, 8 and 9 are
non-deterministic: for example rule 6 states that in order to solve seq(X, t̄)
= ∗ = seq(s1, s̄) we can solve t̄ = ∗ = s̄ with X = s1 or we can solve
normalize(seq(X1, t̄)) = ∗ = normalize(s̄) with X = seq(s1, seq(X1, empty)).
At the end the solutions given by the algorithm are normalized by the normalize
function. When none of the rules is applicable the algorithm fails. Kutsia showed
in [18] that this algorithm terminated if it had a cycle check, (i.e. it stopped with
failure if a unification problem gave rise to a similar unification problem) and
if each sequence variable does not occur more than twice in a given unification
problem.

For the sake of simplicity, the following examples are presented in sequence
notation, alternatively to the sequence term notation.

Example 45 Given t = f(X, b, Y ) and s = f(c, c, b, b, b, b) the projection step
leads to the following transformation cases:

– f(X, b, Y ) = ∗ = f(c, c, b, b, b, b)
– f(b, Y ) = ∗ = f(c, c, b, b, b, b)
– f(X, b) = ∗ = f(c, c, b, b, b, b)
– f(b) = ∗ = f(c, c, b, b, b, b)

Using the transformation rules we can see that only the first and third unifica-
tions succeed. For f(X, b, Y ) = ∗ = f(c, c, b, b, b, b) we have the following answer
substitutions:

– X = c, c and Y = b, b, b
– X = c, c, b and Y = b, b



Success
(1) t = ∗ = s =⇒ True, if t == s 1

(2) X = ∗ = t =⇒ X = t if X does not occur in t.
(3) t = ∗ = X =⇒ X = t if X does not occur in t.

Eliminate
(4) f(t̄) = ∗ = f(s̄) =⇒ t̄ = ∗ = s̄
(5) seq(t1, t̄n) = ∗ = seq(s1, s̄m) =⇒ t1 = ∗ = s1,

t̄n = ∗ = s̄m

(6) seq(X, t̄) = ∗ = seq(s1, s̄) =⇒ X = s1, if X does not occur in s1,
t̄ = ∗ = s̄.

=⇒ X = seq(s1, seq(X1, empty)),
if X does not occur in s1,
normalize(seq(X1, t̄)) = ∗ = normalize(s̄),
where X1 is a new variable.

(7) seq(t1, t̄) = ∗ = seq(X, s̄) =⇒ X = t1, if X does not occur in t1,
t̄ = ∗ = s̄.

=⇒ X = seq(t1, seq(X1, empty)),
if X does not occur in t1,
normalize(t̄) = ∗ = normalize(seq(X1, s̄)),
where X1 is a new variable.

(8) seq(X, t̄) = ∗ = seq(Y, s̄) =⇒ X = Y
t̄ = ∗ = s̄.

=⇒ X = seq(Y, seq(X1, empty),
normalize(seq(X1, t̄)) = ∗ = normalize(s̄),
where X1 is a new variable and X, Y are
distinct.

=⇒ Y = seq(X, seq(Y1, empty)),
normalize(t̄) = ∗ = normalize(seq(Y1, s̄)),
where Y1 is a new variable and X, Y are
distinct.

Split
(9) seq(t1, t̄) = ∗ = seq(s1, s̄) =⇒ if t1 = ∗ = s1 =⇒ r1 = ∗ = q1 then

normalize(seq(r1, t̄)) = ∗ = normalize(seq(q1, s̄))
...

=⇒ if t1 = ∗ = s1 =⇒ rw = ∗ = qw,
normalize(seq(rw, t̄n)) = ∗ = normalize(seq(qw, s̄)),
where t1 and s1 are compound terms.

Fig. 1. Transformation rules



– X = c, c, b, b and Y = b

And for f(X, b) = ∗ = f(c, c, b, b, b, b) we have:

– X = c, c, b, b, b
– Y = ε

Example 46 In some cases we can have an infinite set of solutions for the
unification of two given terms. For example when we solve f(X, a) = ∗ = f(a,X)
the solutions are:

– X = a
– X = a, a
– X = a, a, a
– X = a, a, a, a
– . . .

In the previous example Kutsia algorithm with the cycle check fails immediately
after detecting that it is repeating the unification problem. Our implementa-
tion gives all solutions by backtracking. The correctness of the non-standard
unification algorithm in figure 1 is presented in [8].

5 Conclusion

In this paper we present a constraint solving extension for Prolog to deal with
terms with flexible arity symbols. We show an application of this framework to
XML processing yielding a highly declarative language for that purpose. Some
points can be further developed in future work:

– an extension with further built-in predicates and constraints, such as predi-
cates to deal with XML types (DTDs and XML-Schema);

– XML attributes are ignored in our language. We just translate them to
lists of pairs. More declarative representation of attributes, such as sets of
equalities, and an extension to unification to deal with this new constraints
would be a relevant feature which is left for future work;

– finally we note that, CLP(Flex) may have applications in other areas different
from XML-processing.

Acknowledgements The work presented in this paper has been partially sup-
ported by funds granted to LIACC through the Programa de Financiamento
Plurianual, Fundação para a Ciência e Tecnologia and Programa POSI.

1 == denotes syntactic equality (in opposite with = which denotes standard unifica-
tion)



References

1. Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-
centric general-purpose language. In Proceedings of the eighth ACM SIGPLAN
International Conference on Functional Programming, pages 51–63, Uppsala, Swe-
den, 2003. ACM Press.

2. H. Boley. Relationships between logic programming and XML. In Proc. 14th
Workshop Logische Programmierung, 2000.

3. F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Princi-
ples, Examples, and Semantics. In 2nd Annual International Workshop Web and
Databases, volume 2593 of LNCS. Springer Verlag, 2002.

4. F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Lan-
guage for XML and Semistructured Data: Simulation Unification. In International
Conference on Logic Programming (ICLP), volume 2401 of LNCS, 2002.

5. B. Buchberger, C. Dupre, T. Jebelean, B. Konev, F. Kriftner, T. Kutsia, K. Nak-
agawa, F. Piroi, D. Vasaru, and W. Windsteiger. The Theorema System: Proving,
Solving, and Computing for the Working Mathematician. Technical Report 00-38,
Research Institute for Symbolic Computation, Johannes Kepler University, Linz,
2000.

6. A M Cheadle, W Harvey, A J Sadler, J Schimpf, K Shen, and M G Wallace.
ECLiPSe: An Introduction. Technical Report IC-Parc-03-1, IC-Parc, Imperial Col-
lege London, London, 2003.

7. J. Coelho and M. Florido. Type-based XML Processing in Logic Programming. In
V. Dahl and P. Wadler, editors, Practical Aspects of Declarative Languages, volume
2562 of Lecture Notes in Computer Science, pages 273–285, New Orleans, USA,
2003. Springer Verlag.

8. Jorge Coelho and Mario Florido. CLP(Flex): Constraint Logic Programming Ap-
plied to XML Processing. In Ontologies, Databases and Applications of SEmantics
(ODBASE), LNCS, Agia Napa, Cyprus, 2004. Springer Verlag.

9. A. Colmerauer. An introduction to Prolog III. Communications of the ACM,
33(7):69–90, 1990.

10. A. Colmerauer. Prolog III Reference and Users Manual, Version 1.1. In PrologIA,
Marseilles, 1990.

11. A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A tool for collabo-
rative ontology construction. International Journal of Human-Computer Studies,
46(6):707–727, 1997.

12. M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version 3.0
Reference Manual TR Logic-92-1. Technical report, Stanford University, Stanford,
1992.

13. Haruo Hosoya and Benjamin Pierce. XDuce: A typed XML processing language. In
Third International Workshop on the Web and Databases (WebDB2000), volume
1997 of Lecture Notes in Computer Science, 2000.

14. J. Jaffar. Minimal and complete word unification. Journal of the ACM, 37(1):47–
85, 1990.

15. J. Jaffar and J. L. Lassez. Constraint Logic Programming. In Proceedings of the
Fourteenth Annual ACM Symp. on Principles of Programming Languages, POPL
’87, pages 111–119, Munich, Germany, 1987. ACM Press.

16. Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 19/20:503–581, 1994.



17. Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The
CLP(R) Language and System. In Trans. Program. Lang. Syst., volume 14, pages
339–395. ACM, 1992.

18. T. Kutsia. Unification with sequence variables and flexible arity symbols and
its extension with pattern-terms. In Artificial Intelligence, Automated Reasoning
and Symbolic Computation. Proceedings of Joint AICS’2002 - Calculemus’2002
conference, volume 2385 of Lecture Notes in Artificial Intelligence, pages 290–304,
Marseille, France, 2002. Springer Verlag.

19. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition,
1987.

20. G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik USSR, 103:147–236, 1977.

21. Wolfgang May. XPathLog: A Declarative, Native XML Data Manipulation Lan-
guage. In International Database Engineering & Applications Symposium (IDEAS
’01), Grenoble, France, 2001. IEEE.

22. Pillow: Programming in (Constraint) Logic Languages on the Web.
http://clip.dia.fi.upm.es/Software/pillow/pillow.html.

23. Klaus U. Schulz. Word unification and transformation of generalized equations.
Journal of Automated Reasoning, 11(2):149–184, 1993.

24. Gert Smolka. Feature constraint logics for unification grammars. Journal of Logic
Programming, 12:51–87, 1992.

25. Extensible Markup Language (XML). http://www.w3.org/XML/.
26. XSL Transformations (XSLT). http://www.w3.org/TR/xslt/, 1999.
27. Xtatic. http://www.cis.upenn.edu/˜bcpierce/xtatic/.


